• Title/Summary/Keyword: Sensitive film

Search Result 393, Processing Time 0.026 seconds

Highly Sensitive MEMS-Type Micro Sensor for Hydrogen Gas Detection by Modifying the Surface Morphology of Pd Catalytic Metal (Pd 촉매금속의 표면형상 변형에 의한 고감도 MEMS 형 마이크로 수소가스 센서 제조공정)

  • Kim, Jung-Sik;Kim, Bum-Joon
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.532-537
    • /
    • 2014
  • In this study, highly sensitive hydrogen micro gas sensors of the multi-layer and micro-heater type were designed and fabricated using the micro electro mechanical system (MEMS) process and palladium catalytic metal. The dimensions of the fabricated hydrogen gas sensor were about $5mm{\times}4mm$ and the sensing layer of palladium metal was deposited in the middle of the device. The sensing palladium films were modified to be nano-honeycomb and nano-hemisphere structures using an anodic aluminum oxide (AAO) template and nano-sized polystyrene beads, respectively. The sensitivities (Rs), which are the ratio of the relative resistance were significantly improved and reached levels of 0.783% and 1.045 % with 2,000 ppm H2 at $70^{\circ}C$ for nano-honeycomb and nano-hemisphere structured Pd films, respectively, on the other hand, the sensitivity was 0.638% for the plain Pd thin film. The improvement of sensitivities for the nano-honeycomb and nano-hemisphere structured Pd films with respect to the plain Pd-thin film was thought to be due to the nanoporous surface topographies of AAO and nano-sized polystyrene beads.

Real-Time Small Exposed Area $SiO_2$ Films Thickness Monitoring in Plasma Etching Using Plasma Impedance Monitoring with Modified Principal Component Analysis

  • Jang, Hae-Gyu;Nam, Jae-Uk;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.320-320
    • /
    • 2013
  • Film thickness monitoring with plasma impedance monitoring (PIM) is demonstrated for small area $SiO_2$ RF plasma etching processes in this work. The chamber conditions were monitored by the impedance signal variation from the I-V monitoring system. Moreover, modified principal component analysis (mPCA) was applied to estimate the $SiO_2$ film thickness. For verification, the PIM was compared with optical emission spectroscopy (OES) signals which are widely used in the semiconductor industry. The results indicated that film thickness can be estimated by 1st principal component (PC) and 2nd PC. Film thickness monitoring of small area $SiO_2$ etching was successfully demonstrated with RF plasma harmonic impedance monitoring and mPCA. We believe that this technique can be potentially applied to plasma etching processes as a sensitive process monitoring tool.

  • PDF

Characteristics of Pd doped $SnO_2$ gas sensitive thin films (Pd이 도핑된 $SnO_2$ 박막 가스감지막의 특성)

  • Kim, Jin-Hae;Kim, Dae-Hyun;Lee, Yong-Sung;Kim, Jeong-Gyoo;Jeon, Choon-Bae;Park, Hyo-Derk;Park, Ki-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1779-1781
    • /
    • 2000
  • Pd doped $SnO_2$ thin film sensors were prepared on alumina substrate by rf magnetron sputtering method. The sensitivity of thin film was investigated by varying the heat-treatment temperature, film thickness and gas species. The thin film heat-treated at 600$^{\circ}C$ and film thickness of 5000${\AA}$ showed the highest sensitivity at an operating temperature of 400$^{\circ}C$.

  • PDF

Origami inspired Temperature Sensor based on Stimuli-Responsive Hydrogel (종이접기 기반 자극 반응성 하이드젤 온도 센서 연구)

  • Na, Jun-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.35-38
    • /
    • 2017
  • A thermally responsive hydrogel has reversibility with temperature during swelling. Here, we proposed origami inspired temperature sensor by using multi-layered hydrogel film. The formation of patterned stripes on microscale film drives bending to an angle that can be controlled linearly. Although temperature range was not wide, measured sensitivity of sensors has high resolution and accuracy. It providing a powerful platform for the design of sensitive sensors and that easily adapt other type of sensors in microscale.

Porous Ceramic Fibers: Materials and Applications

  • Kim, Il-Du
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.4-4
    • /
    • 2011
  • Extensive research efforts are directed toward the development of highly sensitive gas sensors using novel nanostructured materials. Among the different strategies for producing sensor devices based on nanosized building blocks, polymeric fiber templating approach which is combined by chemical and physical synthesis routes was attracted much attention. This unique morphology increases the surface area and reduces the interfacial area between film and substrate. Consequently, the surface activity is markedly enhanced while deleterious interfacial effects between film and substrate are significantly reduced. Both effects are highly advantageous for gas sensing applications. In this presentation, facile synthesis of hollow and porous metal oxide nanostructures and their applications in chemical sensors will be discussed.

  • PDF

Some Applications of Ion Beam Enhanved Deposition Techniques

  • Zhang, Fu-min
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.166-171
    • /
    • 1997
  • IBED is a very promosing thin film deposition method because of its many advantages, such as excellent adhesion property of films to substrates, room temperature processing, ease of control over the composition and thickness of films, and so on, over the conventional techniques, It has been widely applied in the field of surface modification of materials in the last decade. In our laboratory, many kinds of thin films, such as wear-resistant hard coatings, corrosion and oxidation protective coatings, biomaterial films, buffer layer for high temperature superconductor films, and oxygen sensitive film, have been synthesized by IBED, and several industrial applications of the IBED films have been conducted.

  • PDF

An Analysis of Emotional Colors in Film Towards Zhang Yimou's History Film 'Hero' (영화 속 감성색채에 대한 분석: 장이머우의 역사영화 '영웅'을 중심으로)

  • Lu, Yuhuan;Song, Seung-keun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.289-290
    • /
    • 2018
  • The purpose of this study is to analyze the emotions of color in Chinese historical film 'Hero'. This study was carried out by questionnaire survey on students and ordinary person of 20 ~ 45 years old Korean-Chinese image content students through sensitive scientific research method. It was evaluated on the color in the background, the lighting of the Chinese historical movie 'Hero'. The results of this study suggest that the color of the film may have an emotional impact on the audience.

  • PDF

Thin Film Thermal Sensor using Amorphous Chalcogenide Semiconductor (비정질 칼코게나이드 반도체를 이용한 박막온도센서)

  • Moon, H.D.;Lim, D.J.;Kim, H.Y.;So, D.S.;Lee, J.M.;Cho, B.H.;Kim, Y.H.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.727-730
    • /
    • 2002
  • Chalcogenide glassy semiconductors(CGS) can be obtained by the melt quenching technique. We have investigated the thin film heterostructures : metal-chalcogenide glassy semiconductors, where metal is copper, and chalcogenide glassy semiconductors are glasses of the system As-Se. Cu/CGS film heterostructure were produced in the vacuum evaporator by the method of vacuum thermal evaporation. Doped films are very sensitive to external actions, and this property allows developing supersensitive precision sensors of temperature, humidity, illumination, and etc. based on them. Cu/CGS film has shown that resistance strongly depend on the temperature. The slop of temperature and resistance shows linear.

  • PDF