• Title/Summary/Keyword: Sensing sensitivity

Search Result 875, Processing Time 0.036 seconds

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong;Lee, Gil S.
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2013
  • In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

Hydrogen Sensing of Graphene-based Chemoresistive Gas Sensor Enabled by Surface Decoration

  • Eom, Tae Hoon;Kim, Taehoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.382-387
    • /
    • 2020
  • Hydrogen (H2) is considered as a new clean energy resource for replacing petroleum because it produces only H2O after the combustion process. However, owing to its explosive nature, it is extremely important to detect H2 gas in the ambient atmosphere. This has triggered the development of H2 gas sensors. 2-dimensional (2D) graphene has emerged as one of the most promising candidates for chemical sensors in various industries. In particular, graphene exhibits outstanding potential in chemoresistive gas sensors for the detection of diverse harmful gases and the control of indoor air quality. Graphene-based chemoresistive gas sensors have attracted tremendous attention owing to their promising properties such as room temperature operation, effective gas adsorption, and high flexibility and transparency. Pristine graphene exhibits good sensitivity to NO2 gas at room temperature and relatively low sensitivity to H2 gas. Thus, research to control the selectivity of graphene gas sensors and improve the sensitivity to H2 gas has been performed. Noble metal decoration and metal oxide decoration on the surface of graphene are the most favored approaches for effectively controlling the selectivity of graphene gas sensors. Herein, we introduce several strategies that enhance the sensitivity of graphene gas sensors to H2 gas.

Sensitivity Characteristics on the Composition Change of the Gas Sensing Materials based on $In_2O_3$ Semiconductor. ($In_2O_3$계 반도성 가스감지재료의 조성변화에 따른 감도특성)

  • 정형진;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.4
    • /
    • pp.54-60
    • /
    • 1985
  • Gas sensing materials for detecting flammable gases such as $CH_4$, $C_3H_8$ and n-$C_4H_{10}$ were developed by util-izing $In_2O_3$ as the principal sensing material. The sensing materials were formulated by mixing $In_2O_3$ powder with one or two other chemicals such as $SnO_2$, $Y_2O_3$ and $Al_2O_3$ with a small addition of $PdCl_2$ as a catalyst. Sample of sensor were fabricated by coating each of the mixtures on a ceramic tube impregnating ethylsili-cate and firing at 75$0^{\circ}C$ Each material mixture was evaluated by measuring and comparing gas sensitivity(resistance in air/resistance with gas) to flammable gases such as $CH_4$, $C_3H-8$ and n-$C_4H_{10}$. It was found that among fifteen compositions tested three compositions as follows show the highest gas sensitivity and thus are very feasible for commercialization as the gas sensors ; o49.5 $In_2O_3$+50 Al2O3_0.5 PdCl2(wt%) o $20In_2O_3+29$ $SnO_2+50$ $Al_2O_3+1$ $PdCl_2$(wt%) o40 $In_2O_3$+9 $Y_2O_3+50$ $Al_2O_3+1$ $PdCl_2$(wt%)

  • PDF

Influence of pH on Sensitivity of $WO_3$ NO gas sensor fabricated by Sol-Coprecipitation method (Sol-Coprecipitation 법에 의한 NO 감지용 $WO_3$ 센서 제조시 pH의 영향)

  • Kim, Suk-Bong;Lee, Dae-Sik;Lee, Duk-Dong;Huh, Jeung-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.118-124
    • /
    • 2001
  • When particles are dissolved in solution, they have different zeta-potentials depending on pH. Zeta-potential has an influence on particle separation, which can control particle size. And the size of $WO_3$ particle affects the sensitivity of $WO_3$ sensor for detecting NO gas. Therefore we study influence of pH on NO-sensing $WO_3$ gas sensor fabricated by Sol-Coprecipitation method. As pH increases from 2 to 7, dynamic mobility of $WO_3$ precursor was increased. When pH was 7, it showed the largest distribution separation. It means when pH is 7, we can make $WO_3$ powder which has smaller particle size. And it is confirmed by particle size analysis of $WO_3$ powder, X-ray diffration result of $WO_3$ sensing layer and surface morphology. It also affect NO sensing characteristics of $WO_3$ gas sensor. The sensing film synthesized at pH 7 showed the largest sensitivity.

  • PDF

Gas sensing properties of $LaFeO_3$ thin films fabricated by RF magnetron sputtering method (RF Magnetron Sputtering 법으로 제조된 $LaFeO_3$ 박막의 가스감지 특성)

  • Jang, Jae-Young;Ma, Dae-Young;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.357-364
    • /
    • 2000
  • The structural, electrical and gas sensing characteristics of $LaFeO_3$ thin films fabricated by r.f. magnetron sputtering method on $Al_2O_3$ substrates were investigated. (121) domonant crystalline plane was observed for the films heat-treated at above $600^{\circ}C$ and gas sensing properties showed p-type semiconductor behaviors. Gas sensing characteristics of the $LaFeO_3$ thin films was studied as a function of film thicknesses and heat treatment temperatures. While the variation of the film thickness showed a little effect on the sensitivity, the heat treatment temperature was critical to the sensitivity. The thin films with thickness of 400 nm heat-treated at $800^{\circ}C$ showed the sensitivity of 400% for 5000ppm CO and 60% for 350ppm $NH_3$ at the working temperature of $300^{\circ}C$.

  • PDF

Robust Design in Terms of Minimization of Sensitivity to Uncertainty and Its Application to Design of Micro Gyroscopes (불확실 변수에 대한 구배 최소화를 이용한 강건 최적 설계와 마이크로 자이로스코프에의 응용)

  • Han, Jeong-Sam;Gwak, Byeong-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1931-1942
    • /
    • 2002
  • In this paper a formulation of robust optimization is presented and illustrated by a design example of vibratory micro gyroscopes in order to reduce the effect of variations due to uncertainties in MEMS fabrication processes. For the vibratory micro gyroscope considered it is important to match the resonance frequencies of the vertical (sensing) and lateral (driving) modes as close as possible to attain a high sensing sensitivity. A deterministic optimization in which the difference of both the sensing and driving natural frequencies is minimized as an objective function results in highly enhanced performance but apt to be very sensitive to fabrication errors. The formulation proposed is to attain robustness of the performance by including the sensitivity of the response with respect to uncertain variables as a term of objective function to be minimized. This formulation is simple and practically applicable since no detail statistical information on fabrication errors is required. The geometric variables, beam width, length and thickness of vibratory micro gyroscopes are adopted as design variables and at the same time considered as uncertain variables because here occur the fabrication errors. A robustness test in terms of a percentage yield by using the Monte Carlo simulation has shown that the robust optimum produces twice more acceptable designs than the deterministic optimum. Improvement of robustness becomes bigger as the amount of fabrication errors is assumed larger. Considering that the magnitude of fabrication errors and uncertainties in a MEMS structure are comparatively large, the present method is illustrated to be a viable approach for a robust MEMS design.

Nondestructive Damage Sensitivity of Carbon Nanotube and Nanofiber/Epoxy Composites using Electro- Micromechanical Technique and Acoustic Emission (전기적-미세역학 시험법과 음향 방출을 이용한 탄소 나노튜브와 나노섬유 강화 에폭시 복합재료의 비파괴 손상 감지능)

  • 김대식;박종만;김태욱
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.285-290
    • /
    • 2004
  • Nondestructive damage sensitivity of carbon nanotube(CNT) and nanofiber (CNF)/epoxy composites with their adding contents was investigated using electro-micromechanical technique. Carbon black (CB) was used only for the comparison with CNT and CNF. The fracture of carbon fiber was detected by acoustic emission (AE), which was correlated to the change in electrical resistance, ΔR under double-matrix composites (DMC) test. Stress sensing on carbon nanocomposites was performed by electro-pullout test under uniform cyclic loading. At the same volume fraction, the damage sensitivity for fiber fracture, matrix deformation and stress sensing were highest for CNT/epoxy composite, whereas for CB/epoxy composite they were the lowest among three carbon nanomaterials (CNMs). Damage sensitivity was correlated with morphological observation of carbon nanocomposites. Homogeneous dispersion among CNMs could be keying parameters for better damage monitoring. In this study, damage sensing of carbon nanocomposites could be evaluated well nondestructively by the electrical resistance measurement with AE.

Fiber Ring Laser Intra-cavity Absorption Spectroscopy for Gas Sensing: Analysis and Experiment

  • Li, Mo;Liu, Kun;Jing, Wencai;Peng, Gang-Ding
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2010
  • Fiber ring laser based intra-cavity absorption spectroscopic sensor has great potential for high sensitivity gas detection. Using the rate equations and propagation equations, we investigated theoretically factors that affect the sensitivity of such fiber ring laser sensors and determined the optimal design parameters and conditions for significant enhancement of the system sensitivity. Experiments have been conducted to determine the sensitivity enhancement performance. The results showed a factor of 25 ~ 30 in sensitivity enhancement in the experimental system, agreeing well with the theoretical expectations. Experiments on acetylene detection have also been carried out and the results showed that the ring cavity significantly increases the signal absorption and that high sensitivity can be obtained for gas detection.

Study of Humidity Sensing Properties Related to Metal Content of Aerosol Deposited Ceramic/Metal Composite Films (에어로졸 증착한 세라믹/금속 복합막의 금속 함량에 따른 습도 감지 특성 연구)

  • Kim, Ik-Soo;Koo, Sang-Mo;Park, Chulhwan;Shin, Weon Ho;Lee, Dong-Won;Oh, Jong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.314-320
    • /
    • 2021
  • Controlling ambient humid condition through high performance humidity sensors has become important for various fields, including industrial process, food storage, and the preservation of historic remains. Although aerosol deposited humidity sensors using ceramic BaTiO3 (BT) material have been widely studied because of their longtime stability, there remain critical disadvantages, such as low sensitivity, low linearity, and slow response/recovery time in case of the sensors fabricated at room temperature. To achieve superior humidity sensing properties even at room temperature condition, BT-Cu composite films utilizing aerosol deposition (AD) process have been proposed based on the percolation theory. The BT-Cu composite films showed gradually improved sensing properties until the Cu concentration reached 15 wt% in the composite film. However, the excessive Cu (above 30 wt%) containing BT-Cu composite films showed a rapid decrease of the sensing properties. The results of observed surface morphology of the AD fabricated composite films, to figure out the metal filler effect, showed correlation between surface topography as well as size and the amount of open pores according to the metal filler content. Overall, it is very important not only dielectric constant of the humidity sensing films but also microstructures, because they affect either the variation range of capacitance by ambient humidity or adsorption/desorption of ambient humidity onto/from the humidity sensing films.

Study on Imaging with Scanning Airborne W-band Millimeter Wave Radiometer

  • Kong, De-Cai;Kim, Yong-Hoon;Li, Jing;Zhang, Sheng-Wei;Sun, Mao-Hua;Liu, He-Guang;Jiang, Jing-Shan
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.593-597
    • /
    • 2002
  • The paper introduces a research on the W-band Millimeter Wave Radiometer(RADW92) through an airborne experiment. Microwave remote sensing images of part of the Yellow River and the WeiHe River are of fared. Analysis of factors influencing the image qualities as well as the resolutions to them are also included. The RADW92 is the first generation of Millimeter Wave Radiometer in China, which works with operating frequency 92 GHz, the bandwidth 2 GHz, the integration time 60ms, the system sensitivity 0.6k and the linearity better than 0.999. Cassegrain Antenna is designed for imaging by conically scanning. The result of the experiment suggested that RADW92 had been adequate for space use.

  • PDF