DOI QR코드

DOI QR Code

Strain-Sensing Characteristics of Multi-Walled Carbon Nanotube Sheet

  • Jung, Daewoong (Department of Electrical Engineering, University of Texas) ;
  • Lee, Gil S. (Department of Electrical Engineering, University of Texas)
  • Received : 2013.08.01
  • Accepted : 2013.09.09
  • Published : 2013.09.30

Abstract

In this paper, the properties of strain sensors made of spin-capable multi-walled carbon nanotubes (MWCNTs) were characterized and their sensing mechanisms analyzed. The key contribution of this paper is a new fabrication technique that introduces a simpler transfer method compared to spin-coating or dispersion CNT. Resistance of the MWCNT sheet strain sensor increased linearly with higher strain. To investigate the effect of CNT concentration on sensitivity, two strain sensors with different layer numbers of MWCNT sheets (one and three layers) were fabricated. According to the results, the sensor with a three-layer sheet showed higher sensitivity than that with one layer. In addition, experiments were conducted to examine the effects of environmental factors, temperature, and gas on sensor sensitivity. An increase in temperature resulted in a reduction in sensor sensitivity. It was also observed that ambient gas influenced the properties of the MWCNT sheet due to charge transfer. Experimental results showed that there was a linear change in resistance in response to strain, and the resistance of the sensor fully recovered to its unstressed state and exhibited stable electromechanical properties.

Keywords

References

  1. Y. Wang, A. X. Wang, Y. Wang, M. K. Chyu, and Q. M. Wang, "Fabrication and characterization of carbon nanotube-polyimide composite based high temperature flexible thin film piezoresistive strain sensor", Sens. Actuators A-Phys., Vol. 199, pp. 265-271, 2013. https://doi.org/10.1016/j.sna.2013.05.023
  2. A. Karaus and H. Paul, "Load cells with small nominal load based on strain gauges using thin-film techniques", Measurement, Vol. 10, pp. 133-139, 1992. https://doi.org/10.1016/0263-2241(92)90009-S
  3. C. K. Demetropoulos, C. R. Morgan, D. K. Sengupta, and H. N. Herkowitz, "Development of a 4-axis load cell used for lumbar inter body load measurements", Med. Eng. Phys., Vol. 31, pp. 846-851, 2009. https://doi.org/10.1016/j.medengphy.2009.04.002
  4. Z. L. Li, P. Dharap, S. Nagarajaiah, E. V. Barrera, and J. D. Kim, "Carbon nanotube film sensors", Adv. Mater., Vol. 16, pp. 640-643, 2004. https://doi.org/10.1002/adma.200306310
  5. S. H. Bae, Y. Lee, B. K. Sharma, H. J. Lee, J. H. Kim, and J. H. Ahn, "Graphene-based transparent strain sensor", Carbon, Vol. 51, pp. 236-242, 2013. https://doi.org/10.1016/j.carbon.2012.08.048
  6. D. Jung, K. H. Lee, D. Kim, D. Burk, L. J. Overzet, and G. S. Lee, "Highly conductive flexible multi-walled carbon nanotube sheet films for transparent touch screen", Jpn. J. Appl. Phys., Vol. 52, p. 03BC03, 2013. https://doi.org/10.7567/JJAP.52.03BC03
  7. K. S. Karimov, M. T. S. Chani, F. A. Khalid, and A. Khan, "Strain sensors based on carbon nanotubescuprous oxide composite", Physica E, Vol. 44, pp. 778-781, 2012. https://doi.org/10.1016/j.physe.2011.11.026
  8. X. Li, C. Levy, and L Elaadil, "Multiwalled carbon nanotube film for strain sensing", Nanotechnology, Vol. 19, p. 045501, 2008. https://doi.org/10.1088/0957-4484/19/04/045501
  9. K. J. Loh, J. Kim, J. P. Lynch, N. W. S. Kam, and N. A. Kotov, "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing", Smart Mater. Struct., Vol. 16, pp. 429-438, 2007. https://doi.org/10.1088/0964-1726/16/2/022
  10. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, "A carbon nanotube strain sensor for structural health monitoring", Smart Mater. Struct., Vol. 15, pp. 737-748, 2006. https://doi.org/10.1088/0964-1726/15/3/009
  11. K. J. Loh, J. P. Lynch, and N. A. Kotov, "Conformable single-walled carbon nanotube thin film strain sensors for structural monitoring", Proc. of the 5th Int. Workshop on Struct. Health Monit., pp. 1- 8. 2005.
  12. S. M. Vemuru, R. Wahi, S. Nagarajaiah, and P. M. Ajayan, "Strain sensing using a multi walled carbon nanotube film", J. Strain Anal. Eng. Des., Vol. 44, pp. 555-562, 2009. https://doi.org/10.1243/03093247JSA535
  13. J. H. Kim, K. H. Lee, D. Burk, L. J. Overzet, and G. S. Lee, "Tuning of Fe catalysts for growth of spincapable carbon nanotubes", Carbon, Vol. 48, pp. 538- 547, 2010. https://doi.org/10.1016/j.carbon.2009.09.075
  14. D. Jung, D. Kim, K. H. Lee, L. J. Overzet, and G. S. Lee, "Transparent film heaters using multi-walled carbon nanotube sheets", Sens. Actuators A-Phys., Vol. 199, pp. 176-180, 2013. https://doi.org/10.1016/j.sna.2013.05.024
  15. D. Jung, Y. Yoon, and G. S. Lee, "Hydrogen sensing characteristics of carbon-nanotube sheet decorated with manganese oxides", Chem. Phys. Lett., Vol. 577, pp. 96-101, 2013. https://doi.org/10.1016/j.cplett.2013.05.047
  16. H. Zhao, Y. Zhang, P. D Bradford, Q. Zhou, Q. Jia, F.-G. Yuan, and Y. Zhu, "Carbon nanotube yarn strain sensors", Nanotechnology, Vol. 21, p. 305502, 2010. https://doi.org/10.1088/0957-4484/21/30/305502
  17. S. Paulson, M. R. Falvo, N. Snider, A. Helser, T. Hudson, A. Seeger, R. M. Taylor, and S. Washburn, "In situ resistance measurements of strained carbon nanotubes", Appl. Phys. Lett., Vol. 75, pp. 2936-2936, 1999. https://doi.org/10.1063/1.125193
  18. S. V. Anand and D. R. Mahapatra, "Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin film", Smart Mater. Struct., Vol. 18, p. 045013, 2009. https://doi.org/10.1088/0964-1726/18/4/045013
  19. H. Jiang, Y. Zhang, G. Yu, and J. Dong, "The effect of uniaxial and torsional deformations on quantum interference of carbon nanotubes", Phys. Lett. A, Vol. 351, pp. 308-313, 2006. https://doi.org/10.1016/j.physleta.2005.11.009
  20. K. J. Loh, J. Kim, J. P. Lynch, N. W. S. Kam, and N. A. Kotov, "Multifunctional layer-by-layer carbon nanotube-polyelectrolyte thin films for strain and corrosion sensing", Smart Mater. Struct., Vol. 16, pp. 429-438, 2007. https://doi.org/10.1088/0964-1726/16/2/022
  21. E. T. Thostenson and T. W. Chou, "Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks", Nanotechnology, Vol. 19, pp. 215713-215419, 2008. https://doi.org/10.1088/0957-4484/19/21/215713
  22. F. Zheng, Z. Zhou, X. Yang, Y. Tang, and Y. Wu, "Sorting single-walled carbon nanotubes by strainbased electrical burn-off ", Carbon, Vol. 48, No. 8, pp. 2169-2174, 2010. https://doi.org/10.1016/j.carbon.2010.02.013
  23. C. L. Cao, C. G. Hu, Y. F. Xiong, X. Y. Han, Y. Xi, and J. Miao, "Temperature dependent piezoresistive effect of multi-walled carbon nanotube films", Diam. Relat. Relat. Mater., Vol. 16, pp. 388-392, 2007. https://doi.org/10.1016/j.diamond.2006.07.008

Cited by

  1. Sensitivity improvement of a thermal convection-based tilt sensor using carbon nanotube vol.56, pp.6S1, 2017, https://doi.org/10.7567/JJAP.56.06GF05
  2. Strain sensing in composites using aligned carbon nanotube sheets embedded in the interlaminar region vol.90, 2016, https://doi.org/10.1016/j.compositesa.2016.08.003