• Title/Summary/Keyword: Sensing Property

Search Result 289, Processing Time 0.024 seconds

Why Gabor Frames? Two Fundamental Measures of Coherence and Their Role in Model Selection

  • Bajwa, Waheed U.;Calderbank, Robert;Jafarpour, Sina
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • The problem of model selection arises in a number of contexts, such as subset selection in linear regression, estimation of structures in graphical models, and signal denoising. This paper studies non-asymptotic model selection for the general case of arbitrary (random or deterministic) design matrices and arbitrary nonzero entries of the signal. In this regard, it generalizes the notion of incoherence in the existing literature on model selection and introduces two fundamental measures of coherence-termed as the worst-case coherence and the average coherence-among the columns of a design matrix. It utilizes these two measures of coherence to provide an in-depth analysis of a simple, model-order agnostic one-step thresholding (OST) algorithm for model selection and proves that OST is feasible for exact as well as partial model selection as long as the design matrix obeys an easily verifiable property, which is termed as the coherence property. One of the key insights offered by the ensuing analysis in this regard is that OST can successfully carry out model selection even when methods based on convex optimization such as the lasso fail due to the rank deficiency of the submatrices of the design matrix. In addition, the paper establishes that if the design matrix has reasonably small worst-case and average coherence then OST performs near-optimally when either (i) the energy of any nonzero entry of the signal is close to the average signal energy per nonzero entry or (ii) the signal-to-noise ratio in the measurement system is not too high. Finally, two other key contributions of the paper are that (i) it provides bounds on the average coherence of Gaussian matrices and Gabor frames, and (ii) it extends the results on model selection using OST to low-complexity, model-order agnostic recovery of sparse signals with arbitrary nonzero entries. In particular, this part of the analysis in the paper implies that an Alltop Gabor frame together with OST can successfully carry out model selection and recovery of sparse signals irrespective of the phases of the nonzero entries even if the number of nonzero entries scales almost linearly with the number of rows of the Alltop Gabor frame.

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.

The Influence of Oxygen Gas Flow Rate on Growth of Tin Dioxide Nanostructures (이산화주석 나노구조물의 성장에서 산소가스 유량이 미치는 영향)

  • Kim, Jong-Il;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.1-7
    • /
    • 2018
  • Tin dioxide, $SnO_2$, is applied as an anode material in Li-ion batteries and a gas sensing materials, which shows changes in resistance in the presence of gas molecules, such as $H_2$, NO, $NO_2$ etc. Considerable research has been done on the synthesis of $SnO_2$ nanostructures. Nanomaterials exhibit a high surface to volume ratio, which means it has an advantage in sensing gas molecules and improving the specific capacity of Li-ion batteries. In this study, $SnO_2$ nanostructures were grown on a Si substrate using a thermal CVD process with the vapor transport method. The carrier gas was mixed with high purity Ar gas and oxygen gas. The crystalline phase of the as-grown tin oxide nanostructures was affected by the oxygen gas flow rate. The crystallographic property of the as-grown tin oxide nanostructures were investigated by Raman spectroscopy and XRD. The morphology of the as-grown tin oxide nanostructures was confirmed by scanning electron microscopy. As a result, the $SnO_2$ nanostructures were grown directly on Si wafers with moderate thickness and a nanodot surface morphology for a carrier gas mixture ratio of Ar gas 1000 SCCM : $O_2$ gas 10 SCCM.

Intelligent Driver Assistance Systems based on All-Around Sensing (전방향 환경인식에 기반한 지능형 운전자 보조 시스템)

  • Kim Sam-Yong;Kang Geong-Kwan;Ryu Young-Woo;Oh Se-Young;Kim Kwang-Soo;Park Sang-Cheol;Kim Jin-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.49-59
    • /
    • 2006
  • DAS(Driver Assistance Systems) support the driver's decision making to increase safety and comfort by issuing the naming signals or even exert the active control in case of dangerous conditions. Most previous research and products intend to offer only a single warning service like the lane departure warning, collision warning, lane change assistance, etc. Although these functions elevate the driving safety and convenience to a certain degree, New type of DAS will be developed to integrate all the important functions with an efficient HMI (Human-Machine Interface) framework for various driving conditions. We propose an all-around sensing based on the integrated DAS that can also remove the blind spots using 2 cameras and 8 sonars, recognize the driving environment by lane and vehicle detection, construct a novel birds-eye HMI for easy comprehension. it can give proper warning in case of imminent danger.

Influence of the Micropore Structures of PAN-based Activated Carbon Fibers on Nerve Agent Simulant Gas (DMMP) Sensing Property (PAN계 활성탄소섬유의 미세기공 구조가 신경작용제 유사가스(DMMP) 감응 특성에 미치는 영향)

  • Kang, Da Hee;Kim, Min-Ji;Jo, Hanjoo;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.191-195
    • /
    • 2018
  • In this study, the influence of microporous structures of activated carbon fibers (ACFs) on dimethyl methylphosphonate (DMMP) gas sensing properties as a nerve agent simulant was investigated. The pore structure was given to carbon fibers by chemical activation process, and an electrode was fabricated for gas sensors by using these fibers. The PAN based ACF electrode, which is an N-type semiconductor, received electrons from a reducing gas such as DMMP, and then electrical resistance of its electrode finally decreased because of the reduced density of electron holes. The sensitivity of the fabricated DMMP gas sensor increased from 1.7% to 5.1% as the micropore volume increased. It is attributed that as micropores were formed for adsorbing DMMP whose molecular size was 0.57 nm, electron transfer between DMMP and ACF was facilitated. In conclusion, it is considered that the appropriate pore structure control of ACFs plays an important role in fabricating the DMMP gas sensor with a high sensitivity.

Comparison of Single-Sensor Stereo Model and Dual-Sensor Stereo Model with High-Resolution Satellite Imagery (고해상도 위성영상에서의 동종센서 스테레오 모델과 이종센서 스테레오 모델의 비교)

  • Jeong, Jaehoon
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.421-432
    • /
    • 2015
  • There are significant differences in geometric property and stereo model accuracy between single-sensor stereo that uses two images taken by stereo acquisition mechanism within identical sensor and dual-sensor stereo that randomly combines two images taken from two different sensors. This paper compares the two types of stereo pairs thoroughly. For experiment, two single-sensor stereo pairs and four dual-sensor stereo pairs were constituted using SPOT-5 stereo and KOMPSAT-2 stereo covering same area. While the two single-sensor stereos have stable geometry, the dual-sensor stereos produced two stable and two unstable geometries. In particular, the unstable geometry led to a decrease in stereo model accuracy of the dual-sensor stereos. The two types of stereo pairs were also compared under the stable geometry. Overall, single-sensor stereos performed better than dual-sensor stereos for vertical mapping, but dual-sensor stereos was more accurate for horizontal mapping. This paper has revealed the differences of two types of stereos with their geometric properties and positioning accuracies, suggesting important considerations for handling satellite stereo images, particularly for dual-satellite stereo images.

Ship Positioning Using Multi-Sensory Data for a UAV Based Marine Surveillance (무인항공기 기반 해양 감시를 위한 멀티센서 데이터를 활용한 선박 위치 결정)

  • Ryu, Hyoungseok;Klimkowska, Anna Maria;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.393-406
    • /
    • 2018
  • Every year in the ocean, various accidents occur frequently and illegal fishing is rampant. Moreover, their size and frequency are also increasing. In order to reduce losses of life or property caused by these, it is necessary to have a means to perform remote monitoring quickly. As an effective platform of such monitoring means, an Unmanned Aerial Vehicle (UAV) is receiving the spotlight. In these situations where marine accidents or illegal fishing occur, main targets of monitoring are ships. In this study, we propose a UAV based ship monitoring system and suggest a method of determining ship positions using UAV multi-sensory data. In the proposed method, firstly, the position and attitude of individual images are determined by using the pre-performed system calibration results and GPS/INS data obtained at the time when images were acquired. In addition, after the ship being detected automatically or semi-automatically from the individual images, the absolute coordinates of the detected ships are determined. The proposed method was applied to actual data measured at 200 m, 350 m, and 500 m altitude, the ship position can be determined with accuracy of 4.068 m, 8.916 m, and 13.734 m, respectively. According to the minimum standard of a hydrographical survey, the ship positioning results of 200 m and 350 m data satisfy grade S and the results of 500 m data do grade 1a, where the accuracy is required for positioning the coastline and topography less significant to navigation order. Therefore, it is expected that the proposed method can be effectively used for various purposes of marine monitoring or surveying.

CO Sensing Properties in Layer structure of SnO2-ZnO System prepared by Thick film Process (SnO2-ZnO계 후막센서 구조에 따른 CO 감지 특성)

  • Park, Bo-Seok;Hong, Kwang-Joon;Kim, Ho-Gi;Park, Jin-Seoung
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • The sensing properties of carbon monooxide were investigated as a function of mixing ratio and the lamination structure of 3mol% ZnO-doped $SnO_2$ and 3mol% $SnO_2$-doped ZnO. The lamination structures were fabricared monolayer, double layer, and hetero layer of $SnO_2$, Zno, and theirs mixture composition using thick film process. There was no second phase by the reaction of $SnO_2$ and ZnO. The conductance was decreased by the addition of ZnO in $SnO_2$, but it was increased with the addition of $SnO_2$ in ZnO. The conductance was increased with temperature and the inlet of CO. There was no improvement of sensitivity in the structure of mono- and double-layer. The hetero-layer structure, however, of $SnO_2$ 3ZnO-ZnO $3SnO_2$ showed the higher resistivity and the highest sensitivity. Ohmic characteristics was confirmed by the linear properties for I-V measurements.

Nano-scale Information Materials Using Organic/Inorganic Templates (유기/무기 나노 템플레이트를 이용한 나노 정보소재 합성 연구)

  • Lee, Jeon-Kook;Jeung, Won-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.4
    • /
    • pp.149-161
    • /
    • 2004
  • The fusion of nano technology and information technology is essential to sustain the present growth rate and to induce new industry in this ever-growing information age. Considering Korean industry whose competitiveness lies heavily on information related technologies, this field will be inevitable for future. Nano materials can be described as novel materials whose size of elemental structure has been engineered at the nanometer scale. Materials in the nanometer size range exhibit fundamentally new behavior, as their size falls below the critical length scale associated with any given property. " Bottom-up' techniques involve manipulating individual atoms and molecules. Bottom-up process usually implies controlled or directed self assembly of atoms and molecules into nano structures. It resembles more closely the processes of biology and chemistry, where atoms and molecules come together to create structures such as crystals or living cells. Nano scale sensors are included in the electronics area since the diverse sensing mechanisms are often housed on a semiconductor substrate and usually give rise to an electronic signal. The application of nano technology to the chemical sensors should allow improvements in functionality such as gas sensing. In this presentation, we will discuss about the nano scale information materials and devices fabricated by using the organic/inorganic nano templates.

Effects of Aerosol Optical Properties on Upward Shortwave Flux in the Presence of Aerosol and Cloud layers (구름과 에어로솔의 혼재시 에어로솔의 광학특성이 상향 단파 복사에 미치는 영향)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.301-311
    • /
    • 2017
  • Aerosol optical properties as well as vertical location of layer can alter the radiative balance of the Earth by reflecting and absorbing solar radiation. In this study, radiative transfer model (RTM) and satellite-based analysis have been used to quantify the top-of-atmosphere (TOA) radiative effect of aerosol layers in the cloudy atmosphere of the northeast Asia. RTM simulation results show that the atmospheric warming effect of aerosols increases with their height in the presence of underlying cloud layer. This relationship is higher for stronger absorbing aerosols and higher surface albedo condition. Over study region ($20-50^{\circ}N$, $110-140^{\circ}E$) and aerosol event cases, it is possible to qualitatively identify absorbing aerosol effects in the presence of clouds by combining the UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with TOA Upward Shortwave Flux (USF) from the Clouds and the Earth's Radiant Energy System (CERES). As the regional-mean radiative effect of aerosols, 6 - 26 % lower the USF between aerosols and cloud cover is taken into account. These results demonstrate the importance of estimation for the accurate quantification of aerosol's direct and indirect effect.