DOI QR코드

DOI QR Code

Effects of Aerosol Optical Properties on Upward Shortwave Flux in the Presence of Aerosol and Cloud layers

구름과 에어로솔의 혼재시 에어로솔의 광학특성이 상향 단파 복사에 미치는 영향

  • Lee, Kwon-Ho (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 이권호 (강릉원주대학교 대기환경과학과)
  • Received : 2017.05.10
  • Accepted : 2017.06.19
  • Published : 2017.06.30

Abstract

Aerosol optical properties as well as vertical location of layer can alter the radiative balance of the Earth by reflecting and absorbing solar radiation. In this study, radiative transfer model (RTM) and satellite-based analysis have been used to quantify the top-of-atmosphere (TOA) radiative effect of aerosol layers in the cloudy atmosphere of the northeast Asia. RTM simulation results show that the atmospheric warming effect of aerosols increases with their height in the presence of underlying cloud layer. This relationship is higher for stronger absorbing aerosols and higher surface albedo condition. Over study region ($20-50^{\circ}N$, $110-140^{\circ}E$) and aerosol event cases, it is possible to qualitatively identify absorbing aerosol effects in the presence of clouds by combining the UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with TOA Upward Shortwave Flux (USF) from the Clouds and the Earth's Radiant Energy System (CERES). As the regional-mean radiative effect of aerosols, 6 - 26 % lower the USF between aerosols and cloud cover is taken into account. These results demonstrate the importance of estimation for the accurate quantification of aerosol's direct and indirect effect.

에어로솔의 광학특성과 연직고도는 태양 복사의 반사와 흡수과정을 통하여 지구복사수지에 영향을 미치게 된다. 본 연구에서는 복사전달모델과 위성관측자료를 이용하여 동북아시아 지역에서 구름의 존재 시 에어로솔 층에 의한 복사특성을 분석하였다. 복사전달 모의 결과는 구름이 하부에 존재하는 경우에 에어로솔 층의 고도가 높아짐에 따라 대기 온난화 효과가 증가하였다. 이러한 관계는 에어로솔의 광 흡수성이 커질수록, 지표 반사도가 증가할수록 비례하는 경향을 나타내었다. 그리고 연구대상지역 ($20-50^{\circ}N$, $110-140^{\circ}E$)에서 주요 에어로솔 이벤트 사례에 대하여, UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with Upward Shortwave Flux (USF) Clouds and the Earth's Radiant Energy System (CERES) 위성관측자료를 이용하여 광 흡수성 에어로솔에 의한 영향을 정량적으로 분석하였다. 각 사례에 대한 평균적인 복사효과는 약 6 - 26 %에 해당하는 상향 단파 복사량의 감쇄효과가 나타났다. 이러한 결과는 에어로솔에 의한 직접효과와 간접효과를 정량화 하기 위한 중요성을 설명해 준다.

Keywords

References

  1. Bauer, S.E., and S. Menon, 2012. Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions, Journal of Geophysical Research, 117(D1): D01206, 1-15.
  2. Hansen, J., M. Sato, and R. Ruedy, 1997. Radiative forcing and climate response, Journal of Geophysical Research, 102(D6): 6831-6864. https://doi.org/10.1029/96JD03436
  3. Russell, P.B, P.V. Hobbs, and L.L. Stowe, 1999. Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), Journal of Geophysical Research, 104(D2): 2213-2222. https://doi.org/10.1029/1998JD200028
  4. Ramanathan, V., P.J. Crutzen, M.O. Andreae, J. Coakley, R. Dickerson, J. Heintzenberg, A. Heymsfield, J.T. Kiehl, D. Kley, T.N. Krishnamurti, J. Kuettner, J. Lelieveld, S.C. Liu, A.P. Mitra, J. Prospero, R. Sadourny, A.F. Tuck, F.P.J. Valero, 1995. Indian Ocean Experiment (INDOEX) white paper, Rep. C4, Scripps Inst. of Oceanogr., Univ. of Calif., San Diego, La Jolla, Calif., Aug. 1995.
  5. Huebert, B.J., T. Bates, P.B. Russell, G. Shi, Y.J. Kim, K. Kawamura, G. Carmichael, and T. Nakajima, 2003. An overview of ACE-Asia: Strategies for quantifying the relationships between Asian aerosols and their climatic impacts, Journal of Geophysical Research, 108(D23): 8633. https://doi.org/10.1029/2003JD003550
  6. Li, Z., K.-H. Lee, Y. Wang, J. Xin, and W.-M. Hao, 2010. First observation-based estimates of cloudfree aerosol radiative forcing across China, Journal of Geophysical Research, 115(D7): D00K18, 1-9.
  7. Lee, K.H., Z. Li, Y.J. Kim, and A. Kokhanovsky, 2009. Aerosol monitoring from satellite observations: A history of three decades. In: Atmospheric and Biological Environmental Monitoring. Springer, Netherlands.
  8. Ricchiazzi, P., Yang, S., Gautier, C., and Sowle, D., 1998. SBDART: A research and teaching software tool for plane parallel radiative transfer in the earth's atmosphere, Bulletin of the American Meteorological Society, 79(10): 2101-2114. https://doi.org/10.1175/1520-0477(1998)079<2101:SARATS>2.0.CO;2
  9. Alvarado, M.J., V.H. Payne, E.J. Mlawer, G. Uymin, M.W. Shephard, K.E. Cady-Pereira, J.S. Delamere, and J.-L. Moncet, 2013. Performance of the Line-By-Line Radiative Transfer Model (LBLRTM) for temperature, water vapor, and trace gas retrievals: recent updates evaluated with IASI case studies, Atmospheric Chemistry and Physics, 13(14): 6687-6711. https://doi.org/10.5194/acp-13-6687-2013
  10. Lee, K.H. and Kim, Y.J., 2010. Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days, Atmospheric Measurement Techniques 3(6): 1771-1784. https://doi.org/10.5194/amt-3-1771-2010
  11. Hahn, C.J., W.B. Rossow, and S.G. Warren, 2001. ISCCP cloud properties associated with standard cloud types identified in individual surface observations, Journal of Climate, 14(1): 11-28. https://doi.org/10.1175/1520-0442(2001)014<0011:ICPAWS>2.0.CO;2
  12. Yi, L., B. Thies, S. Zhang, X. Shi, and J. Bendix, 2016. Optical thickness and effective radius retrievals of low stratus and fog from MTSAT daytime data as a prerequisite for Yellow Sea fog detection, Remote Sensing, 8(1): 8. https://doi.org/10.3390/rs8010008
  13. Viollier, M., 1980. Teledetection des concentrations de seston et pigments chlorophylliens contenus dans l'Ocean, These de Doctorat d'Etat, no 503.
  14. Reeves, R.G., A. Anson, and D. Landen, 1975. Manual of Remote Sensing American Society of Photogrammetry, Falls Church, Virginia.
  15. Wielicki, B.A., B.R. Barkstrom, E.F. Harrison, R.B. Lee, G.L. Smith and J.E. Cooper, 1996. Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System experiment, Bulletin of the American Meteorological Society, 77(5): 853-868. https://doi.org/10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2
  16. Hsu, N.C., J.R. Herman, and S.-C. Tsay, 2003. Radiative Impacts from biomass burning in the presence of clouds during boreal spring in southeast Asia, Geophysical Research Letters, 30(5): 1224.
  17. Lee, K. H.,-2012. Aerosol direct radiative forcing by three dimensional observations from passiveand active- satellite sensors, Journal of Korean Society for Atmospheric Environment, 28(2): 159-171 (in Korean with English abstract), 30. https://doi.org/10.5572/KOSAE.2012.28.2.159