• 제목/요약/키워드: Sen

검색결과 801건 처리시간 0.02초

Assessing Neurobehavioral Alterations Among E-waste Recycling Workers in Hong Kong

  • Gengze Liao;Feng Wang;Shaoyou Lu;Yanny Hoi Kuen Yu;Victoria H. Arrandale;Alan Hoi-shou Chan;Lap Ah Tse
    • Safety and Health at Work
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2024
  • Background: E-waste workers in Hong Kong are handling an unprecedented amount of e-waste, which contains various neurotoxic chemicals. However, no study has been conducted to evaluate the neurological health status of e-waste workers in Hong Kong. This study aimed to evaluate the prevalence of neurobehavioral alterations and to identify the vulnerable groups among Hong Kong e-waste workers. Methods: We recruited 109 Hong Kong e-waste workers from June 2021 to September 2022. Participants completed standard questionnaires and wore a GENEActiv accelerometer for seven days. Pittsburgh Sleep Quality Index and Questionnaire 16/18 (Q16/18) were used to assess subjective neurobehavioral alterations. The GENEActiv data generated objective sleep and circadian rhythm variables. Workers were grouped based on job designation and entity type according to the presumed hazardous level. Unconditional logistic regression models measured the associations of occupational characteristics with neurobehavioral alterations after adjusting for confounders. Results: While dismantlers/repairers and the workers in entities not funded by the government were more likely to suffer from neurotoxic symptoms in Q18 (adjusted odds ratio: 3.18 [1.18-9.39] and 2.77 [1.10-7.46], respectively), the workers from self-sustained recycling facilities also have poor performances in circadian rhythm. Results also showed that the dismantlers/repairers working in entities not funded by the government had the highest risk of neurotoxic symptoms compared to the lowest-risk group (i.e., workers in government-funded companies with other job designations). Conclusion: This timely and valuable study emphasizes the importance of improving the working conditions for high-risk e-waste workers, especially the dismantlers or repairers working in facilities not funded by the government.

A study on transport and plugging of sodium aerosol in leak paths of concrete blocks

  • Sujatha Pavan Narayanam;Soubhadra Sen;Kalpana Kumari;Amit Kumar;Usha Pujala;V. Subramanian;S. Chandrasekharan;R. Preetha;B. Venkatraman
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.132-140
    • /
    • 2024
  • In the event of a severe accident in Sodium Cooled Fast Reactors (SFR), the sodium combustion aerosols along with fission product aerosols would migrate to the environment through leak paths of the Reactor Containment Building (RCB) concrete wall under positive pressure. Understanding the characteristics of sodium aerosol transport through concrete leak paths is important as it governs the environmental source term. In this context, experiments are conducted to study the influence of various parameters like pressure, initial mass concentration, leak path diameter, humidity etc., on the transport and deposition of sodium aerosols in straight leak paths of concrete. The leak paths in concrete specimens are prepared by casting and the diameter of the leak path is measured using thermography technique. Aerosol transport experiments are conducted to measure the transported and plugged aerosol mass in the leak paths and corresponding plugging times. The values of differential pressure, aerosol concentration and relative humidity taken for the study are in the ranges 10-15 kPa, 0.65-3.04 g/m3 and 30-90% respectively. These observations are numerically simulated using 1-Dimensional transport equation. The simulated values are compared with the experimental results and reasonable agreement among them is observed. From the safety assessment view of reactor, the approach presented here is conservative as it is with straight leak paths.

Wogonin attenuates vascular remodeling by inhibiting smooth muscle cell proliferation and migration in hypertensive rat

  • Yang Yang;Shan Huang;Jun Wang;Xiao Nie;Ling Huang;Tianfa Li
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.39-48
    • /
    • 2024
  • Wogonin, extracted from the roots of Scutellaria baicalensis Georgi, has been shown to suppress collagen deposition in spontaneously hypertensive rats (SHRs). This study was performed to investigate the role and mechanism of wogonin underlying vascular remodeling in SHRs. After injection of SHRs with 40 mg/kg of wogonin, blood pressure in rats was measured once a week. Masson's trichrome staining was conducted to observe the changes in aortas and mesenteric arteries. Vascular smooth muscle cells (VSMCs) isolated from rat thoracic aortas were treated with Angiotensin II (Ang II; 100 nM) in the presence or absence of varying concentrations of wogonin. The viability and proliferation of VSMCs were examined using Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, respectively. The migration of VSMCs was examined using wound healing assay and transwell assay. We found that wogonin administration alleviated hypertension, increased lumen diameter, and reduced the thickness of the arterial media in SHRs. Ang II treatment enhanced the viability of VSMCs, which was inhibited by wogonin in a concentration-dependent manner. Wogonin reversed Ang II-induced increases in the viability, proliferation, and migration of VSMCs. Moreover, wogonin inhibited Ang II-induced activation of mitogen-activated protein kinase (MAPK) signaling in VSMCs. Overall, wogonin repressed the proliferative and migratory capacity of VSMCs by regulating the MAPK signaling pathway, thereby attenuating vascular remodeling in hypertensive rats, indicating that wogonin might be a therapeutic agent for the treatment of vascular diseases.

계절 Mann-Kendall 검정을 이용한 소양호의 장기 수질 경향성 분석 (Long-Term Water Quality Trend Analysis of Lake Soyang Using Seasonal Mann-Kendall Test)

  • 염호정;안용빈;정세윤;김윤석;김범철;홍은미
    • 한국농공학회논문집
    • /
    • 제66권2호
    • /
    • pp.25-34
    • /
    • 2024
  • The long-term monitoring of the Soyang Lake's water quality, covering 25% of the North Han River watershed, is crucial for effective management of both lake water quality and pollution sources in the broader region. This study utilized continuous monitoring data from the front of the Soyang Dam spanning 2003 to 2022, aiming to analyze trends and provide foundational insights for water quality management. Results revealed a slightly poor grade (IV) for total nitrogen (T-N) in both surface and mid-depth layers, indicating a need for concentrated T-N management. Trend analyses using the Mann-Kendall test and Sen's Slope depicted a decreasing trend in total phosphorus (T-P) for both layers, attributed to non-point source pollution reduction projects initiated after the Soyang Lake's designation as a pollution control area in 2007. The LOWESS analysis showed a T-P increase until 2006, followed by a decrease, influenced by the impact of Typhoon Ewiniar in that year. This 20-year overview establishes a comprehensive understanding of the Soyang Lake's water quality and trends, allowing for a seasonal and periodical analysis of water quality changes. The findings underscore the importance of continued monitoring and management strategies to address evolving water quality issues in the Soyang Lake over time.

Collaborative Inference for Deep Neural Networks in Edge Environments

  • Meizhao Liu;Yingcheng Gu;Sen Dong;Liu Wei;Kai Liu;Yuting Yan;Yu Song;Huanyu Cheng;Lei Tang;Sheng Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권7호
    • /
    • pp.1749-1773
    • /
    • 2024
  • Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and universality of various intelligent applications, at the expense of increasing model size and computational demand. Since the resources of end devices are often too limited to deploy a complete DNN model, offloading DNN inference tasks to cloud servers is a common approach to meet this gap. However, due to the limited bandwidth of WAN and the long distance between end devices and cloud servers, this approach may lead to significant data transmission latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm to accelerate the execution of DNN inference tasks where DNN models are partitioned to be sequentially executed in both end devices and edge servers. Nevertheless, collaborative inference in heterogeneous edge environments with multiple edge servers, end devices and DNN tasks has been overlooked in previous research. To fill this gap, we investigate the optimization problem of collaborative inference in a heterogeneous system and propose a scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task offloading and scheduling to reduce the average weighted inference latency. CIS decomposes the problem into three parts to achieve the optimal average weighted inference latency. In addition, we build a prototype that implements CIS and conducts extensive experiments to demonstrate the scheme's effectiveness and efficiency. Experiments show that CIS reduces 29% to 71% on the average weighted inference latency compared to the other four existing schemes.

Comparative Study on Autonomous Vehicle Operation Status in South Korea and China - Focusing on Xiong'an New District in China and Sejong City in South Korea -

  • Sen Zhan;Choong-Sik Chung
    • Journal of Platform Technology
    • /
    • 제12권1호
    • /
    • pp.12-31
    • /
    • 2024
  • Today, many countries around the world recognize the development of autonomous vehicles as a national growth engine, support technology development through various projects, and promote it as national policy. China and Korea are representative countries that are strongly promoting autonomous vehicle policies. The Chinese government's policy direction for self-driving cars focuses on support for fostering new industries. Korea has established mid- to long-term goals and plans to foster the future mobility industry as a key growth engine and is promoting these as a national task. Recently, China and Korea have established national pilot areas to test autonomous vehicle operation and are actively pursuing policies. We aim to compare and analyze the operation status of self-driving cars in China's Xiong'an New Area and South Korea's Sejong City and derive policy implications regarding self-driving cars, which are emerging as a key industry of the future. According to the analysis results, it was found that China's Xiong'an New District is ahead of Korea's Sejong City in terms of leader leadership. As a result, autonomous driving is being operated at the government-wide and national level in Xiong'an New Area. In terms of the driving force, in the case of Xiongan New Area, the policy is being promoted by companies centered on Baidu, and in the case of Sejong City, the policy is being promoted by the local government. As a result, it is estimated that Xiongan New Area will be able to reach commercialization before Sejong City. In the final policy proposal, it was proposed to break away from the existing government-led method and switch to a collaboration with the private sector and a private-led method.

  • PDF

Titanium alloys: A closer-look at mechanical, gamma-ray, neutron, and transmission properties of different grade alloys through MCNPcode application

  • Ghada ALMisned;Omer Guler;Duygu Sen Baykal;G. Kilic;H.O. Tekin
    • Nuclear Engineering and Technology
    • /
    • 제56권9호
    • /
    • pp.3501-3511
    • /
    • 2024
  • Titanium alloys play a vital role in optimizing the effectiveness and security of nuclear reactors, strengthening structural durability, and facilitating the effective handling of nuclear waste. The aim of this study is to investigate the gamma-ray, neutron, and transmission properties of four common titanium alloys through the examination of the deposited energy amount in the liquid sodium coolant material, in relation to the mechanical properties of these alloys. MCNP (version 6.3) is utilized for designing the titanium pipes. Next, the pipes were re-designed considering the elemental mass fractions and densities of the investigated titanium alloys. Grade 26 sample is reported with the highest values of mass attenuation coefficients and the lowest HVL values among those investigated alloys. Grade 26 is reported to have the lowest TF value, whereas Grade 12 demonstrated the highest TF value. The highest Effective Removal Cross Section (ΣR, 1/cm) value against fast neutrons is reported for Grade 26. The utilization of Grade 26 sample as pipe material resulted in the lowest deposited energy amount (MeV/g) and subsequent lowest contamination in the coolant material. Out of the alloys that were chosen for analysis, it has been determined that Grade 26 exhibits the highest level of strength. It can be concluded that the Grade 26 alloy exhibits desirable characteristics for applications in nuclear technologies that require superior gamma-ray and neutron absorption properties, as well as exceptional mechanical properties. Nevertheless, it is essential to emphasize the importance for ongoing studies to enhance the existing material properties of Grade 26, with the aim of achieving improved safety and efficacy in nuclear applications.

국가 지하수관측소 지하수위, 전기전도도 및 수온자료에 대한 모수적 및 비모수적 변동 경향성 분석 (Parametric and Non-parametric Trend Analysis of Groundwater Data Obtained from National Groundwater Monitoring Stations)

  • 이진용;이명재;이재명;안경환;원종호;문상호;조민조
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권2호
    • /
    • pp.56-67
    • /
    • 2006
  • 본 연구에서는 국가 지하수관측소에서 획득한 지하수위, 전기전도도 및 수온 관측자료에 대해 모수 및 비모수 경향 분석을 실시하였다. 분석대상은 2003년까지 3년 이상 모니터링을 실시하고 있는 관측소의 지하수 자료이며, 이에는 충적관측정 95개소와 암반관측정 169개소가 해당된다. 모수분석으로 일평균 및 월중앙값에 대해 선형회귀분석을, 그리고 비모수분석으로 월중앙값에 대해 Mann-Kendall test 및 Sen's test를 적용하였다. 선형회귀분석을 통해서는 약50%의 관측정에서 수위, 전기전도도 및 수온이 증가경향을 나타내었고 나머지 절반은 감소하는 것으로 나타났다. 그러나 월중앙값을 이용한 비모수 경향분석에서는 99% 신뢰수준에서 지하수위는 $14.8{\sim}20.0%$가 감소경향으로 나타났고, 전기전도도는 $24.2{\sim}36.9%$가 증가경향을 보였으며, 수온의 경우에는 $27.4{\sim}32.5%$가 증가경향을 보였다. 높은 비율의 관측정에서 증가 혹은 감소의 경향성을 보이는 것은 분석대상 기간이 상대적으로 짧은(최장 6년) 것에 기인한 결과일 수 있다. 한편 현장조사를 실시하여 평가한 결과에서 나타난 지하수위 혹은 전기전도도의 감소 혹은 증가경향 자체가 직접적인 지하수 장해를 의미하지는 않는다. 결국 장기적인 경향성과 더불어 해당 인자의 값 자체 및 감소율을 고려하여야 한다. 본 연구는 국가 지하수관측소 자동 측정자료에 대한 최초의 전면적인 경향분석 결과이다. 이번 연구사례를 토대로 국내 지하수 자원의 전체적인 변동상황을 파악하기 위해서는 정기적인 경향분석을 수행할 필요가 있다.

콘크리트 채움 U형 메가 합성보의 내진성능 평가 (Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams)

  • 이철호;안재권;김대경;박지훈;이승환
    • 한국강구조학회 논문집
    • /
    • 제29권2호
    • /
    • pp.111-122
    • /
    • 2017
  • 본 연구에서는 1900mm급의 춤이 깊은 콘크리트 채움 U형 메가 합성보의 합성보통모멘트골조에 대한 적용성을 검토하였다. 대형 합성보의 실물대 내진성능실험에 대한 현실적 제약으로 인하여 작은 규모의 실험체에 대해 수행된 기존 실험결과의 분석과 수치해석연구의 보완을 통해 연구를 수행하였다. 이러한 형태의 합성보는 부모멘트 작용시의 웨브국부좌굴이 가장 중요하므로 선행 실물대 실험결과로부터 웨브의 판폭두께비와 층간변형능력 사이의 관계를 분석하였다. 그 결과, 25mm 두께의 U형 강재단면을 지닌 1900mm급의 대형 합성보라 하더라도 층간변위각 2% 이후 웨브국부좌굴을 경험하고 3% 이후 최대변형에 도달하는 것으로 확인되었다. 이는 합성보통모멘트골조의 요구조건을 상회하는 것으로 AISC 기준에 따른 웨브 판폭두께비 제한이 본 연구의 U형 단면에는 보수적임을 시사하기도 한다. 유한요소해석을 통해서는 합성보의 휨성능 및 웨브국부좌굴에 대한 수평스티프너의 영향을 분석하였다. 대형 합성보는 스티프너 보강과 관련없이 부모멘트 방향으로 공칭소성모멘트 이상의 휨성능을 발휘하였으며, 스티프너를 보강할 경우에는 웨브국부좌굴이 상당히 지연되는 긍정적인 효과가 있었다. 이상의 실험결과 분석 및 해석연구에 의하면 1900mm급의 춤이 깊은 콘크리트 채움 U형 메가 합성보는 합성보통모멘트골조에 보수적으로 적용가능한 것으로 판단된다.

Establishing a Nomogram for Stage IA-IIB Cervical Cancer Patients after Complete Resection

  • Zhou, Hang;Li, Xiong;Zhang, Yuan;Jia, Yao;Hu, Ting;Yang, Ru;Huang, Ke-Cheng;Chen, Zhi-Lan;Wang, Shao-Shuai;Tang, Fang-Xu;Zhou, Jin;Chen, Yi-Le;Wu, Li;Han, Xiao-Bing;Lin, Zhong-Qiu;Lu, Xiao-Mei;Xing, Hui;Qu, Peng-Peng;Cai, Hong-Bing;Song, Xiao-Jie;Tian, Xiao-Yu;Zhang, Qing-Hua;Shen, Jian;Liu, Dan;Wang, Ze-Hua;Xu, Hong-Bing;Wang, Chang-Yu;Xi, Ling;Deng, Dong-Rui;Wang, Hui;Lv, Wei-Guo;Shen, Keng;Wang, Shi-Xuan;Xie, Xing;Cheng, Xiao-Dong;Ma, Ding;Li, Shuang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권9호
    • /
    • pp.3773-3777
    • /
    • 2015
  • Background: This study aimed to establish a nomogram by combining clinicopathologic factors with overall survival of stage IA-IIB cervical cancer patients after complete resection with pelvic lymphadenectomy. Materials and Methods: This nomogram was based on a retrospective study on 1,563 stage IA-IIB cervical cancer patients who underwent complete resection and lymphadenectomy from 2002 to 2008. The nomogram was constructed based on multivariate analysis using Cox proportional hazard regression. The accuracy and discriminative ability of the nomogram were measured by concordance index (C-index) and calibration curve. Results: Multivariate analysis identified lymph node metastasis (LNM), lymph-vascular space invasion (LVSI), stromal invasion, parametrial invasion, tumor diameter and histology as independent prognostic factors associated with cervical cancer survival. These factors were selected for construction of the nomogram. The C-index of the nomogram was 0.71 (95% CI, 0.65 to 0.77), and calibration of the nomogram showed good agreement between the 5-year predicted survival and the actual observation. Conclusions: We developed a nomogram predicting 5-year overall survival of surgically treated stage IA-IIB cervical cancer patients. More comprehensive information that is provided by this nomogram could provide further insight into personalized therapy selection.