
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, Jul. 2024 1749
Copyright ⓒ 2024 KSII

This work was supported in part by the Science and Technology Project of State Grid Co., LTD (Research on data
aggregation and dynamic interaction technology of enterprise-level real-time measurement data center, 5108-
202218280A-2-399-XG).

http://doi.org/10.3837/tiis.2024.07.003 ISSN : 1976-7277

Collaborative Inference for Deep Neural
Networks in Edge Environments

Meizhao Liu1, Yingcheng Gu1, Sen Dong2, Liu Wei1, Kai Liu1, Yuting Yan2, Yu Song1,

Huanyu Cheng1, Lei Tang1, and Sheng Zhang2*

1State Grid Jiangsu Electric Power Co Ltd, Information & Telecommunication Branch,
 Nanjing, China

2State Key Lab. for Novel Software Technology, Nanjing University,
Nanjing, 210023 China

[e-mail: sheng@nju.edu.cn]
*Corresponding author: Sheng Zhang

Received November 21, 2023; revised January 16, 2024; accepted June 12, 2024;

published July 31, 2024

Abstract

Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and
universality of various intelligent applications, at the expense of increasing model size and
computational demand. Since the resources of end devices are often too limited to deploy a
complete DNN model, offloading DNN inference tasks to cloud servers is a common approach
to meet this gap. However, due to the limited bandwidth of WAN and the long distance
between end devices and cloud servers, this approach may lead to significant data transmission
latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm
to accelerate the execution of DNN inference tasks where DNN models are partitioned to be
sequentially executed in both end devices and edge servers. Nevertheless, collaborative
inference in heterogeneous edge environments with multiple edge servers, end devices and
DNN tasks has been overlooked in previous research. To fill this gap, we investigate the
optimization problem of collaborative inference in a heterogeneous system and propose a
scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task
offloading and scheduling to reduce the average weighted inference latency. CIS decomposes
the problem into three parts to achieve the optimal average weighted inference latency. In
addition, we build a prototype that implements CIS and conducts extensive experiments to
demonstrate the scheme’s effectiveness and efficiency. Experiments show that CIS reduces
29% to 71% on the average weighted inference latency compared to the other four existing
schemes.

Keywords: Edge intelligence, Collaborative inference, Deep inference, Computation
offloading.

1750 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

1. Introduction

In recent times, deep neural network (DNN), positioned as a cornerstone technology for
Artificial Intelligence (AI) and Machine Learning (ML) [1], has achieved remarkable
development. This technology has been widely applied in various fields including Computer
Vision [2], Natural Language Processing [3] and speech recognition [4].

Nevertheless, with the improvement of universality and accuracy, the scale of DNN model
is also growing, which means more memory and computational resources are required. For
instance, when executing inference on a 224x224 image using VGG16, it entails processing
over 138 million parameters through more than 15 billion operations. If executed on a Nexus
5 smartphone, the task would take approximately 16 seconds [5]. This is obviously intolerable
for some real-time tasks. Consequently, to meet the memory and computation requirements,
DNN inference tasks are typically offloaded to cloud servers with extensive computational
resources. However, this traditional cloud computing paradigm encounters several challenges.
First, it struggles to meet the real-time requirements of some Internet of Things (IoT)
applications when the network condition is poor. Then, massive data may impose a
considerable burden on network communication and cloud server processing. What’s more,
concerns regarding privacy leaks due to data transmission to the cloud also cannot be ignored
[6]. To address these problems, device-edge collaborative inference has emerged as a
promising paradigm to promote edge intelligence.

Model partition is an important technology in collaborative inference. Motivated by the
significant reduction of data size of some intermediate layers compared to that of input layer,
a DNN model is partitioned so that the inference task can be sequentially executed on the end
device and edge server. Proper partition can make full use of the computational resources of
servers within limited communication overhead [7]. Most prior research on collaborative
inference has been limited in the single scenario involving single task and single server.
However, realistic scenarios often encompass the presence of multiple edge servers (ESs) and
multiple end devices (EDs) with distinct DNN tasks. Meanwhile, different end devices and
edge servers, encompassing smartphones, base stations, and gateways, may exhibit different
computational capacities, forming the heterogeneous edge environments, in which
collaborative inference needs to be considered.

This paper studies the DNN partition, task offloading and scheduling problem in
heterogeneous collaborative inference systems, which aims to minimize the average weighted
inference latency for DNN tasks. In this problem, each task can be partitioned at different
layers according to the computational capacities of devices and network conditions, so we
must determine the layers at which the DNN task is partitioned, i.e., partition strategy.
Prior explorations have predominantly limited to the DNNs with chain topology. However,
many advanced DNN models adopt DAG topology, e.g., GoogleNet [8] and ResNet [9], which
brings new challenges to collaborative inference. Besides, each task can be offloaded to one
of the servers in the system, so we must determine the server to which the task is offloaded,
i.e., offloading strategy. What’s more, there can be more than one task offloaded to the same
server, so we must determine the order in which the tasks are executed, i.e., scheduling
strategy. The FCFS(First-Come-First-Serve) policy is commonly taken by previous works
[11]. However, in real-world scenarios, different tasks often have different priorities. For
example, in a smart home system, the priority of tasks responsible for security systems needs
to be higher than those responsible for other tasks (such as audio control). When multiple tasks
are offloaded to the same server, the scheduling strategy has an undeniable impact on their
weighted inference latency. Hence, FCFS policy can hardly adapt to this priority scenario.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1751

To fill these gaps, this paper deeply studies the collaboration of EDs and ESs in a
heterogeneous scenario. We formulate this problem as a ILP problem and denote it as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,
short for task Partition, Offloading and Scheduling Problem. Then a heuristic scheme CIS, i.e.,
collaborative inference scheme, is proposed for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The main contributions of this paper
are summarized as follows:

1) This paper puts forward the collaborative inference in a heterogeneous scenario. The
stated problem seeks to minimize the average weighted inference latency by
optimizing partition strategy, scheduling strategy and offloading strategy.

2) This paper builds a system model for heterogeneous collaborative inference, and
proposes a scheme CIS to minimize average weighted inference latency based on this
model. CIS decouples the optimization problem into three subproblems: DNN partition,
task offloading and task scheduling.

3) Based on DADS [7], a widely used scheme for DNN partition, algorithm MCP is
proposed to deal with the partition for different DNN models, no matter what the
topology it is. Then we design SWRTF policy for the task scheduling problem since
they have different priorities. At last, CIS utilizes branch and bound to obtain the final
strategies, which traverse all feasible solutions in a breadth first manner with proper
pruning.

4) Extensive experiments are conducted to verify the performance of this scheme. The
comprehensive and in-depth analysis of the results demonstrates that our scheme can
greatly reduce the inference latency compared with current approaches.

2. Related Work
Collaborative inference is a significant research direction in edge intelligence, which means
end devices complete the DNN inference tasks with the assistance of edge servers or cloud
servers.

Kang et al. [16] initially proposed layer-wise partition of DNN models as an approach to
enable collaborative inference. However, their approach is limited to linearly-structured DNNs
and proved ineffective for more general Directed Acyclic Graph (DAG) structured DNNs.
Given that many DNNs exhibit DAG structures, Hu et al. [7] modeled the partition of these
DNNs as a min-cut problem and provided a method for computing optimal partition points
using max-flow solutions. On this basis, they introduced a system named DADS (Dynamic
Adaptive DNN Splitting) that can handle model partition in dynamic network environments.
Zhang et al. [17] noted that the min-cut-based partition method has a high time complexity,
making it challenging to adapt to scenarios with rapidly changing network conditions.
Consequently, they simplified the problem and introduced a two-stage system called QDMP
for finding the optimal partitioning point. Wang et al. [18] proposed a hierarchical scheduling
optimization strategy called DeepInference-L. By executing computations and data transfers
between layers in a pipelined manner, they further reduced the overall latency of collaborative
inference. Furthermore, Duan et al. [19] considered the scenarios where multiple DNN
inference tasks run on a single mobile device. They employed convex optimization techniques
to comprehensively address multi-task partition and scheduling strategies. However, these
studies only consider the scenarios of a single device and a single server, which is not
applicable to general edge computing scenarios.

Gao et al. [10] designed a dynamic evaluation strategy under a time slot model, dividing a
DNN inference task into multiple subtasks and dynamically determining its offloading strategy.
Tang et al. [11] proposed an iterative alternative optimization (IAO) algorithm to solve the

1752 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

problem of task partition in a multi-user scenario. Mohammed et al. [12] proposed that in the
context of fog computing, a DNN model can be divided into multiple parts, each of which can
be executed at fog nodes or locally. Combined with matching theory, an adaptive dynamic
task partition and scheduling system DINA was proposed, which can greatly reduce the
inference latency. Although the aforementioned studies take the multiple devices into
consideration, they ignore the fact that offloading all tasks to a single edge server would lead
to issues of excessive load on that server and underutilization of resources on other servers.

To address this problem, Yang et al. [13] introduced an edge-device collaborative inference
system called CoopAI, which employs a novel partition algorithm to offload a DNN inference
task onto multiple edge servers. By analyzing the characteristics of DNN inference, it permits
servers to pre-fetch necessary data, reducing the cost of data exchange and consequently
reducing inference latency. Liao et al. [14] delved into the DNN partitioning and task
offloading challenges in heterogeneous edge computing scenarios. They conducted an analysis
of the task offloading issue involving multiple terminal devices and multiple edge servers.
Employing an optimal matching algorithm, they proposed an algorithm that comprehensively
addresses both partitioning and offloading concerns, thereby reducing overall system inference
latency and energy consumption. Shi et al. [15] presented an offline partitioning and
scheduling algorithm, GSPI, for enhancing the speed of DNN inference tasks in a multi-user
multi-server setting. However, it's important to note that they exclusively considered scenarios
where all users execute the same DNN inference task.

This paper focuses on the collaborative DNN inference problem under the scenario with
multiple end devices and multiple edge servers. Given the varying computational capacities of
end devices and their distinct upload bandwidths to different edge servers, the manner in which
DNN models are partitioned and the selection of servers for tasks to offloading significantly
impact the inference latency. By comprehensively considering multiple factors, we propose
the collaborative inference scheme CIS for heterogeneous edge computing environments.

3. System Model and Problem Formulation
We first introduce the heterogeneous collaborative inference system mentioned above in
Section 3.1. Then we formalized our problem with the target of minimizing average weighted
inference latency and the decision variable involving partition strategy 𝑃𝑃, offloading strategy
𝑋𝑋 and scheduling strategy Φ in Section 3.2.

3.1 Heterogeneous Collaborative Inference System
An edge computing system is comprised of a set of end devices and a set of resource-
constrained edge servers. As shown in Fig. 1, each ED is equipped with a pretrained DNN
model and executes the DNN inference task of this model. To accelerate the execution of DNN
inference tasks, each DNN model can be partitioned at layer-level and then offloaded to one
of the ESs. The EDs and ESs are connected in a LAN, where each ES is accessible for each
ED.

We denote the set of 𝑛𝑛 end devices as 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2,⋯ , 𝑑𝑑𝑛𝑛}. For convenience, we use task
𝑗𝑗 to denote the task on 𝑑𝑑𝑗𝑗 . Each end device 𝑑𝑑𝑗𝑗 is associated with two parameters: 𝑤𝑤𝑗𝑗 and
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗). Here 𝑤𝑤𝑗𝑗 represents the priority of task 𝑗𝑗 and task with greater 𝑤𝑤𝑗𝑗 has a higher priority.
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗) represents the computational capacity of ED 𝑑𝑑𝑗𝑗 measured in FLOPS. It worth nothing
that in the heterogeneous system, these parameters of different EDs can be varying. In this
paper, we assume all the tasks can be partitioned at most once, which means each task can

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1753

only be offloaded to at most one server.

Fig. 1. Collaborative inference system in heterogeneous edge computing scenarios

We denote the set of 𝑚𝑚 edge servers as 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑚𝑚} . Let 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖) denote the

computational capacity of 𝑠𝑠𝑖𝑖, measured in FLOPS. Let 𝑏𝑏𝑖𝑖𝑖𝑖 denote the bandwidth between 𝑠𝑠𝑖𝑖
and 𝑑𝑑𝑗𝑗. In this paper, we assume that each 𝑏𝑏𝑖𝑖𝑖𝑖 is given and constant. ESs will pre-load the
DNN models of the tasks offloaded to them. After intermediate data being sent to the server,
the task will be added to a waiting list to wait for scheduling. Once a server is idle, it will select
a task from the waiting list to execute, and the execution can’t be interrupted until the task is
finished. Table 1 lists the main symbols used in this article.

Table 1. Main notations

Symbol Definition
𝑠𝑠𝑖𝑖 The 𝑖𝑖th edge server
𝑑𝑑𝑗𝑗 The 𝑗𝑗th end device
𝑤𝑤𝑗𝑗 The priority of task 𝑗𝑗

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖) The computational capacity of ES 𝑠𝑠𝑖𝑖 (FLOPS)
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗) The computational capacity of ED 𝑑𝑑𝑗𝑗 (FLOPS)
𝑏𝑏𝑖𝑖𝑖𝑖 The bandwidth between 𝑠𝑠𝑖𝑖 and 𝑑𝑑𝑗𝑗
𝛷𝛷(𝑠𝑠𝑖𝑖) The scheduling strategy of tasks offloaded to 𝑠𝑠𝑖𝑖
𝑝𝑝𝑗𝑗 The partition strategy of task 𝑗𝑗

𝐿𝐿𝑗𝑗(𝑝𝑝) The local computation size of task 𝑗𝑗 with partition 𝑝𝑝 (FLOPs)
𝐶𝐶𝑗𝑗(𝑝𝑝) The transmission data size of task 𝑗𝑗 with partition 𝑝𝑝 (FLOPs)
𝑅𝑅𝑗𝑗(𝑝𝑝) The remote computation size of task 𝑗𝑗 with partition 𝑝𝑝 (FLOPs)
𝑥𝑥𝑖𝑖𝑖𝑖 Binary decision variable, 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 indicates that task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 The latency of local computing when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 The latency of data transmission when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖

End Devices

Task1 Task2 Task3 Task4 Task5

Task2

Task3

Task5 Task1

Task4

NetWork

Edge Servers

Waiting List

1754 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 The latency of waiting for scheduling when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖
𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 The latency of remote computing when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖
𝑇𝑇 The average weighted inference latency of the system

3.2 System Model

3.2.1 DNN Layer-level Computation and Output data Model
DNN models are usually composed of a series of layers, such as convolutional layers,
excitation layers, active layers, pooling layers and fully connected layers. To compute the
inference latency of a DNN, we must analyze the computation and output data size of each
layer of the DNN model.

Layer-level Computational Cost: We measure the computational cost of each layer using
FLoating point OPerations (FLOPs), which represents the number of basic mathematical
operations (such as addition, subtraction, multiplication, etc.) to be performed. Similar
methods have been used in [14]. Let 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) denote the computational cost of layer 𝑣𝑣. Since
some layers, like active layer, have a very small computational cost, we just consider the main
DNN layers whose computational cost has impact on the inference latency of the model as
follows:
• Convolutional Layer: Convolutional layer is one of the most basic layers in DNNs. It

performs convolution operations on the input data through a set of convolution kernels to
extract local features at different locations. The computational cost of convolution layer
depends on the size of the input feature map and the size and number of the convolution
kernel. For the convolution layer 𝑣𝑣 , assuming the size of the input feature map is
𝑤𝑤𝑖𝑖𝑖𝑖 × ℎ𝑖𝑖𝑖𝑖, the size of the convolution kernel is 𝑤𝑤𝑘𝑘 × ℎ𝑘𝑘, and the number of channels of
the input feature map is 𝐶𝐶𝑖𝑖𝑖𝑖, the number of channels of the output feature map is 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜, the
size of stride is 𝑤𝑤𝑠𝑠 × ℎ𝑠𝑠, then its computational cost is:

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) = �
𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑘𝑘

𝑤𝑤𝑠𝑠
+ 1� ∗ �

ℎ𝑖𝑖𝑖𝑖 − ℎ𝑘𝑘
ℎ𝑠𝑠

+ 1� ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 ∗ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑤𝑤𝑘𝑘 ∗ ℎ𝑘𝑘 ∗ 2, (1)

where �𝑤𝑤𝑖𝑖𝑖𝑖−𝑤𝑤𝑘𝑘
𝑤𝑤𝑠𝑠

+ 1� ∗ �ℎ𝑖𝑖𝑖𝑖−ℎ𝑘𝑘
ℎ𝑠𝑠

+ 1� represents the number of multiplicative operations
required for each output position and it is also the number of additive operations required
for each output position.

• Fully Connected Layer: Fully connected layer is also one of the most basic layers in deep
neural networks. By connecting each input neuron to an output neuron and giving each
connection a weight, the features extracted from the previous layers are combined and
integrated to generate the final output. For fully connected layer 𝑣𝑣, assuming that the
dimension of the input feature vector is 𝑑𝑑𝑖𝑖𝑖𝑖 and the dimension of the output feature vector
is 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜, then its computational cost is:

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) = (𝑑𝑑𝑖𝑖𝑖𝑖 + (𝑑𝑑𝑖𝑖𝑖𝑖 − 1)) ∗ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜, (2)
where 𝑑𝑑𝑖𝑖𝑖𝑖 denotes the multiplicative operation, and (𝑑𝑑𝑖𝑖𝑖𝑖 − 1) denotes the additive
operation.

Output Data Size: We use 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) to denote the output data size of layer 𝑣𝑣. For layer 𝑣𝑣,
assuming the size of its output feature map is 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 × ℎ𝑜𝑜𝑜𝑜𝑜𝑜, then the output data size of this
layer 𝑣𝑣 is:
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 ∗ ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , (3)

If the tensor size of the input image is (3 × 224 × 224), the computation and output data size
of the layers of MobileNet_V2 model are shown in Fig. 2.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1755

Fig. 2. Computation and output data size of each layer of MobileNetV2 model.

3.2.2 DNN Partition Model
The inference process of DNN is actually a process of forward propagation, starting from the
input layer and gradually moving forward, each layer conducts a series of calculations on its
own input and sends the results to its subsequent layers as their input. Thus, given a DNN
model 𝑀𝑀, we can represent 𝑀𝑀 as a DAG (directed acyclic graph) 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸 >, where 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉
corresponds to one layer and the directed edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸 represents the dependency between 𝑣𝑣𝑖𝑖
and 𝑣𝑣𝑗𝑗. It should be emphasized that each vertex may have multiple edges starting from it and
multiple edges ending at it. For example, Fig. 3(a) shows a piece of GoogLeNet [8], which
can be modeled as a DAG as shown in Fig. 3(b).

(a) (b)

Fig. 3. A piece of GoogLeNet (a) and the DAG corresponding to it (b)

In the context of deep neural networks (DNNs), it should be noted that the computational
cost and output size of each layer are different and independent of each other, which provides
an opportunity for DNN partition. DNN partition is to divide a DNN model into two parts to
execute them on different devices. Formally, we define 𝑝𝑝𝑗𝑗 =< 𝑉𝑉𝑗𝑗𝑙𝑙 ,𝑉𝑉𝑗𝑗𝑟𝑟 > as the partition of task
𝑗𝑗 which partitions its vertex set 𝑉𝑉𝑗𝑗 into two disjoint subsets 𝑉𝑉𝑗𝑗𝑙𝑙 and 𝑉𝑉𝑗𝑗𝑟𝑟 . The layers
corresponding to the vertex in 𝑉𝑉𝑗𝑗𝑙𝑙 are executed on an ED, and the layers corresponding to the
vertex in 𝑉𝑉𝑗𝑗𝑟𝑟 are executed on an ES. Fig. 3(b) shows a partition of GoogLeNet mentioned
above.

Thus, as to task 𝑗𝑗 and one of its partitions 𝑝𝑝𝑗𝑗, the local computational cost is:
 𝐿𝐿𝑗𝑗�𝑝𝑝𝑗𝑗� = � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)

𝑣𝑣∈𝑉𝑉𝑗𝑗
𝑙𝑙

, (4)

Filter
Concat

1*1
Conv

1*1
Conv

1*1
Conv

1*1
Conv

3*3
Conv

5*5
Conv

1*1
Conv

Filter
Concat

1*1
Conv

1*1
Conv

1*1
Conv

1*1
Conv

3*3
Conv

5*5
Conv

1*1
Conv

Filter
Concat

PartitionLocal Computing Remote Computing

1756 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

the transmission data size is:
 𝐶𝐶𝑗𝑗�𝑝𝑝𝑗𝑗� = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)

𝑣𝑣∈𝑉𝑉𝑗𝑗
𝑐𝑐

, (5)

and the remote computational cost is:
 𝑅𝑅𝑗𝑗�𝑝𝑝𝑗𝑗� = � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)

𝑣𝑣∈𝑉𝑉𝑗𝑗
𝑟𝑟

, (6)

where 𝑉𝑉𝑗𝑗𝑙𝑙 and 𝑉𝑉𝑗𝑗𝑟𝑟 denote the set of layers executed on the EDs and the set of layers executed on
the ESs respectively. 𝑉𝑉𝑗𝑗𝑐𝑐 represents the set of layers that need to send their output to the ES,
which means each layer in 𝑉𝑉𝑗𝑗𝑐𝑐 is belong to 𝑉𝑉𝑗𝑗𝑙𝑙 and has a successor layer in 𝑉𝑉𝑗𝑗𝑟𝑟.

3.2.3 Task Scheduling Model
In reality, there are often fewer edge servers than end devices, so it is common for multiple

tasks to be offloaded to the same server. In our system, the server can only execute one task at
a time, so tasks need to wait for scheduling before execution. As a result, the scheduling policy,
specifically the execution order of tasks, has a great impact on the average weighted inference
latency. In previous related works, they schedule the tasks in a first-come-first-service (FCFS)
manner [11], but it can’t solve our problem well for tasks have different priorities. For example,
suppose there are three tasks offloaded to the same server. We define the arrival time of a task
as the time it takes before the intermediate data is sent to the server, including local computing
time and data transmission time. Also, we the server computing time as the time of task
execution on the server. Then the three task’s arrival time, server computing time and task
priority are (5,5,3), (7,2,2), (3,6,1) respectively. Fig. 4 shows the results of two scheduling
strategies, where the left one is according to FCFS and the right one is in another way. Their
average weighted inference latencies are 83/3 and 24 respectively, which shows that different
scheduling strategies have an important impact on inference latency. To formally represent the
scheduling strategy, let 𝜙𝜙(𝑠𝑠𝑖𝑖) denote the task sequence on 𝑠𝑠𝑖𝑖, then the scheduling strategy of
the system can be represented as Φ = {𝜙𝜙(𝑠𝑠1),𝜙𝜙(𝑠𝑠2),⋯ ,𝜙𝜙(𝑠𝑠𝑚𝑚)}. The kth scheduled task on
𝑠𝑠𝑖𝑖 can be represented as 𝜙𝜙𝑘𝑘(𝑠𝑠𝑖𝑖), where 1 ≤ 𝑘𝑘 ≤ |𝜙𝜙(𝑠𝑠𝑖𝑖)|.

Fig. 4. Two different scheduling strategies

3.2.4 Task Offloading and Inference Latency Model
In the heterogeneous system, due to the disparity in computational capacity and bandwidth
between ESs, it is obvious that the task offloading strategy does affect the inference latency.
Formally, we use a set of binary variables 𝑋𝑋 = {𝑥𝑥11,𝑥𝑥12,⋯ , 𝑥𝑥1𝑚𝑚,⋯ , 𝑥𝑥𝑛𝑛1,𝑥𝑥𝑛𝑛2,⋯ , 𝑥𝑥𝑛𝑛𝑛𝑛} to
denote the offloading strategy. Specifically, 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if and only if task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖;
otherwise, 𝑥𝑥𝑖𝑖𝑖𝑖 = 0. Since one task can only be offloaded to one ES, we can get that ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 =
1,∀1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.

3
7

5
6

5
2

Task1
Task2
Task3

9 14 16

Arrival time

Server computing time

3
7

5Task1
Task2
Task3

10 12 18

Arrival time

Server computing time

5
2

6

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1757

Once a task is partitioned and decided to be offloaded to an ES, the execution of this task
can be divided into four stages: local computing, data transmission, waiting for scheduling and
remote computing. Therefore, if task 𝑗𝑗 is partitioned by 𝑝𝑝𝑗𝑗 and offloaded to ES 𝑠𝑠𝑖𝑖, its inference
latency is:
 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , (7)
where 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 denotes the latency of local computing:
 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝑗𝑗(𝑝𝑝𝑗𝑗)/𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗), (8)
𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denotes the latency of data transmission:

𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝐶𝐶𝑗𝑗�𝑝𝑝𝑗𝑗�
𝑏𝑏𝑖𝑖𝑖𝑖

, (9)

𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 denotes the latency of waiting for scheduling:
 𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡𝑖𝑖𝑗𝑗′

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑡𝑡𝑖𝑖𝑗𝑗′
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) − (𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), (10)

where 𝑗𝑗′ denotes the task scheduled before 𝑗𝑗 on 𝑠𝑠𝑖𝑖. Suppose 𝑗𝑗 is 𝜙𝜙𝑘𝑘(𝑠𝑠𝑖𝑖), then 𝑗𝑗′ is 𝜙𝜙𝑘𝑘−1(𝑠𝑠𝑖𝑖).
𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denotes the latency of remote computing:

 𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑗𝑗(𝑝𝑝𝑗𝑗)/𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖). (11)
Assuming that all tasks start at the same time, the average weighted inference latency of the
entire system is:

3.2.5 Problem Formulation
The QoE [23] of the applications based on DNN model improves with the reduction of
inference latency. Since different tasks have different priorities, we try to minimize the average
weighted inference latency 𝑇𝑇 of the system by collaborative inference. Considering the
computational capacity and network bandwidth of the system, an inference reduction problem
is formulated in this subsection. We now refer to this optimization problem with partition
strategy 𝑃𝑃 , offloading strategy 𝑋𝑋 and scheduling strategy Φ as POSP, e.g. task Partition,
Offloading and Scheduling Problem, and define it as follows:

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃,𝛷𝛷,𝑋𝑋

𝑇𝑇

(12)

𝑠𝑠.𝑡𝑡. 𝐶𝐶1: 𝑉𝑉𝑗𝑗𝑙𝑙 ∪ 𝑉𝑉𝑗𝑗𝑟𝑟 = 𝑉𝑉𝑗𝑗,𝑉𝑉𝑗𝑗𝑙𝑙 ∩ 𝑉𝑉𝑗𝑗𝑟𝑟 = ∅,∀1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,

𝐶𝐶2: �𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,

 𝐶𝐶3: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,
 𝐶𝐶4: 𝜙𝜙(𝑠𝑠𝑖𝑖) = {𝑗𝑗| 𝑥𝑥𝑖𝑖𝑖𝑖 = 1}.
The optimization objective function 𝑇𝑇 is the average weighted inference latency of the entire
system, which can be formulated as:

 𝑇𝑇 =
1
𝑛𝑛
� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
. (13)

Constraint 𝐶𝐶1 guarantees the valid of partition strategy of each task. Constraint 𝐶𝐶2 and 𝐶𝐶3
manifest that one task can only be offloaded to one ES at most or even just be completed
locally. Constraint 𝐶𝐶4 is used to guarantee t task sequence on 𝑠𝑠𝑖𝑖 is consistent with offloading
strategy 𝑋𝑋. Due to the existence of multiple variables and the high coupling between variables,
problem POSP is too complex to be solved directly. Thus, we need to give further analysis
and decompose problem POSP to get the optimal strategies.

1758 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

4. Algorithm Design
We have modeled our problem as an optimization problem POSP and point out that it is
complex owing to the existence of multiple decision variables. In this section, we first reveal
several structural properties of our problem and then decompose the problem into three parts.
After that, we propose an algorithm MCP for DNN partition, a scheduling policy SWRTF for
task scheduling and an algorithm BBO for DNN allocation to solve POSP step by step.

4.1 Problem Decomposition
Since there are multiple sets of variables in POSP and the variables are coupled with each
other, we need to decouple them to decompose the complex problem. The main idea of our
scheme is to give the corresponding partition strategy 𝑃𝑃 and scheduling strategy Φ for each
offloading strategy 𝑋𝑋, thus binding 𝑃𝑃 and Φ to 𝑋𝑋, which means as long as 𝑋𝑋 is determined, 𝑃𝑃
and Φ can be determined accordingly. Then we just need to solve the new problem 𝒫𝒫 which
only has 𝑋𝑋 as its decision variables. So, our scheme can be decomposed into three steps: 1)
give the partition strategy 𝑃𝑃 for each offloading strategy 𝑋𝑋, 2) give the scheduling strategy Φ
for each offloading strategy 𝑋𝑋, 3) generate the new problem 𝒫𝒫 which only has 𝑋𝑋 as its decision
variables and solve this problem to give the optimal offloading strategy 𝑋𝑋. Since step 1) and
2) has bound 𝑃𝑃 and Φ to 𝑋𝑋, so with the result of step 3), we can give the final optimal strategy
𝑃𝑃, Φ and 𝑋𝑋 for problem POSP.

Fig. 5. CIS flow

4.1.1 DNN Partition
For most DNN, they have many different partitions, which makes it more difficult for us to
solve the problem. However, some partitions will lead to excessive inference latency thus
almost impossible to become the optimal solution. Therefore, we can reduce the solution space
by selecting an optimal partition 𝑝𝑝𝑖𝑖𝑖𝑖 for each DNN task 𝑗𝑗 when trying to offload it to ES 𝑠𝑠𝑖𝑖.
Based on the method proposed in [7], we design an algorithm MCP, e.g., min-cut based
partition, which first constructs a latency graph 𝐺𝐺′ for each task 𝑗𝑗 and ES 𝑠𝑠𝑖𝑖 based on the DAG
𝐺𝐺 of the DNN model of task 𝑗𝑗 to convert the optimal partition problem to the minimum
weighted s–t cut problem of 𝐺𝐺′ , and then get the optimal partition 𝑝𝑝𝑖𝑖𝑖𝑖 using a min-cut
algorithm.

Fig. 6. Constructing the latency graph

For task 𝑗𝑗 and ES 𝑠𝑠𝑖𝑖, let 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸 > denote the corresponding DAG of the DNN model

of task 𝑗𝑗, we can construct a weighted DAG 𝐺𝐺′, e.g., its latency graph, as follows:

POSP Bind P to XMCP P,Φ,XBBOBind Φ to X SWRTF

s

t

v V’

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1759

1) Add a source node 𝑠𝑠 and a sink node 𝑡𝑡 to 𝐺𝐺′.
2) Add the remote computing edges 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: For each node 𝑣𝑣 ∈ 𝑉𝑉, add an edge from 𝑠𝑠 to

𝑣𝑣, whose weight is 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)/𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖), e.g., the time for executing this layer on 𝑠𝑠𝑖𝑖.
3) Add the local computing edges 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: For each node 𝑣𝑣 ∈ 𝑉𝑉, add an edge from 𝑣𝑣 to 𝑡𝑡,

whose weight is 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)/𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗), e.g., the time for executing this layer on 𝑑𝑑𝑗𝑗.
4) Add the data transmission edges 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: It is worth nothing that the output data of a layer

only need to be transmit at most once even if it has more than one successor layers. Thus,
there are two conditions we add data transmission edges.
a) For each node 𝑣𝑣 ∈ 𝑉𝑉, if it only has one successor 𝑣𝑣′ in 𝐺𝐺, add an edge from 𝑣𝑣 to 𝑣𝑣′,

whose weight is 𝐶𝐶𝑗𝑗
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣))
𝑏𝑏𝑖𝑖𝑖𝑖

, i.e., the time for transmitting 𝑣𝑣’s output data from 𝑑𝑑𝑗𝑗 to

𝑠𝑠𝑖𝑖.
b) For each node 𝑣𝑣 ∈ 𝑉𝑉, if it has more than one successors in 𝐺𝐺, we first add a virtual

node 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 to 𝐺𝐺′, then add an edge from 𝑣𝑣 to 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, whose weight is 𝐶𝐶𝑗𝑗
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣))
𝑏𝑏𝑖𝑖𝑖𝑖

,

and then add an edge from 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 to all the successors of 𝑣𝑣 in 𝐺𝐺, whose weight is
positive infinity.

Fig. 6 shows an example of constructing the latency graph of a DAG. At this stage, the optimal
partition problem has been converted to the minimum weighted s–t cut problem of the latency
graph 𝐺𝐺′. For a s-t cut 𝐶𝐶 of 𝐺𝐺′, the edges in 𝐶𝐶 comprise three parts: remote computing edges,
local computing edges and data transmission edges. Thus, the value of 𝐶𝐶 is exactly equal to
the inference latency of the DNN task at the partition of 𝐶𝐶 without considering the time waiting
for scheduling. Then we use a min-cut algorithm to get the minimum weighted s–t cut of 𝐺𝐺′,
and get the optimal partition 𝑝𝑝𝑖𝑖𝑖𝑖 from this. In the following steps of determining scheduling
and offloading strategies, we suppose task 𝑗𝑗 is partitioned at 𝑝𝑝𝑖𝑖𝑖𝑖 when offloaded to 𝑠𝑠𝑖𝑖. Now,
we have bound 𝑃𝑃 to 𝑋𝑋 , i.e., the partition strategy 𝑃𝑃 can be determined accordingly when
offloading strategy 𝑋𝑋 is determined. Since the time complexity of min-cut algorithm is
𝑂𝑂(|𝑉𝑉|2|𝐸𝐸| ln |𝑉𝑉|), where |𝑉𝑉| is the number of nodes in the DAG and |𝐸𝐸| is the number of
edges in the DAG, the time complexity of constructing the latency graph is 𝑂𝑂(|𝑉𝑉| + |𝐸𝐸|), the
time complexity of MCP is 𝑂𝑂(𝑚𝑚𝑚𝑚|𝑉𝑉′|2|𝐸𝐸′| ln |𝑉𝑉′|), where |𝑉𝑉′| is the largest number of nodes
in all the DAG and |𝐸𝐸′| is the largest number of edges in all the DAG.

Algorithm 1. MCP
Input: The computational capacity 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗) of ED 𝑑𝑑𝑗𝑗 and the DAG 𝐺𝐺𝑗𝑗 of the DNN model on
𝑑𝑑𝑗𝑗, the computational capacity 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑠𝑠) of ES 𝑠𝑠𝑖𝑖, the bandwidth 𝑏𝑏𝑖𝑖𝑖𝑖 between 𝑑𝑑𝑗𝑗 and 𝑠𝑠𝑖𝑖.
1: for each ED 𝑑𝑑𝑗𝑗 ∈ 𝑫𝑫 do
2: for each ES 𝑠𝑠𝑖𝑖 ∈ 𝑺𝑺 do
3: 𝐺𝐺′ ← latency_graph_construct(𝐺𝐺𝑗𝑗, 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗), 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑠𝑠), 𝑏𝑏𝑖𝑖𝑖𝑖);
4: 𝑝𝑝𝑖𝑖𝑖𝑖 ← min_cut(𝐺𝐺′);
5: return 𝑃𝑃 = {𝑝𝑝𝑖𝑖𝑖𝑖|1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚};

4.1.2 Task Scheduling
To give the scheduling strategy Φ for each offloading strategy 𝑋𝑋, we design a new scheduling
policy for tasks offloaded to the same ES called “shortest weighted remaining time first”
(SWRTF). In particular, SWRTF has three rules:
1) The ES will not be idle unless there are no tasks in the waiting list.
2) Tasks are executed non-preemptively, that is, once a task starts executing, other tasks

must wait until the execution of the task ends.

1760 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

3) The task with shortest weighted remaining time 𝑅𝑅𝑅𝑅𝑗𝑗 will be scheduled first, where 𝑅𝑅𝑅𝑅𝑗𝑗 =
𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑤𝑤𝑗𝑗.

For a given task 𝑗𝑗 and ES 𝑠𝑠𝑖𝑖, if task 𝑗𝑗 is decided to be offloaded to 𝑠𝑠𝑖𝑖, then the partition 𝑝𝑝𝑖𝑖𝑖𝑖
of the task 𝑗𝑗 are given as Section 4.1.1 mentioned. Suppose the set of tasks offloaded to 𝑠𝑠𝑖𝑖 is
𝐽𝐽𝑖𝑖 = {𝑗𝑗1, 𝑗𝑗2,⋯ , 𝑗𝑗𝑞𝑞} . Then for each 𝑗𝑗𝑘𝑘 in 𝐽𝐽𝑖𝑖, the local computation 𝐿𝐿𝑗𝑗𝑘𝑘(𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘), transmission data
size 𝐶𝐶𝑗𝑗𝑘𝑘(𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘) and remote computation 𝑅𝑅𝑗𝑗𝑘𝑘(𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘) of 𝑗𝑗𝑘𝑘 are given. Thus 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and

𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 can be obtained from Eqs. (8)(9)(11). Thus, the arrival time, i.e., the time of local

computing and data transmission, and the shortest weighted remaining time of each task are
given. Then the scheduling strategy 𝜙𝜙(𝑠𝑠𝑖𝑖) for these tasks can be given based on SWRTF. The
same goes for other ESs. Now, we have bound Φ to 𝑋𝑋, i.e., scheduling strategy Φ can be
determined accordingly when offloading strategy 𝑋𝑋 is determined.

4.1.3 Task Offloading
Based on the practical consideration on DNN partition and task scheduling in Section 4.1.1

and 4.1.2, we can bind partition strategy 𝑃𝑃 and scheduling strategy Φ to offloading strategy 𝑋𝑋,
e.g., we just need to decide the offloading strategy 𝑋𝑋 , then the partition strategy 𝑃𝑃 and
scheduling strategy Φ will be decided accordingly. As a result, our initial optimization
problem POSP can be transformed into an 0-1 integer optimization problem which only has
one set of variables 𝑋𝑋:

𝒫𝒫: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋

𝑇𝑇

(14)

𝑠𝑠.𝑡𝑡. 𝐶𝐶1: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑖𝑖𝑖𝑖 ,

𝐶𝐶2: �𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,

 𝐶𝐶3: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,
 𝐶𝐶4: 𝜙𝜙(𝑠𝑠𝑖𝑖) = {𝑗𝑗| 𝑥𝑥𝑖𝑖𝑖𝑖 = 1}.

Actually, this is a variant of general assignment problem (GAP) where the cost of assigning a
task to a server, i.e., its weighted inference latency 𝑤𝑤𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖, can be changed by the other tasks
assigned to the same server since the waiting time 𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is affected by 𝑋𝑋. Motivated by the
algorithm proposed by Ross, G. Terry, and Richard M. Soland [20], we design a heuristic
algorithm BBO, i.e., branch and bound optimization to solve this problem. The detailed
introduction of BBO is in Section 4.2. Once the offloading strategy 𝑋𝑋 is determined by BBO,
partition strategy 𝑃𝑃 and scheduling strategy Φ can be determined accordingly, thus
determining the solution of the initial problem POSP.

4.2 Branch and Bound Optimization Algorithm (BBO)
Actually, branch and bound is a way to traverse the entire solution space of the problem with
pruning to limit the time complexity. Branch is for generating the solution and bound is for
pruning. According to branch and bound, the solution set for 𝒫𝒫 is separated into two mutually
exclusive and collectively exhaustive subsets based on the 0-1 dichotomy of variable values,
so as to the subsets created. Fig. 7 gives an example of separating the solution set of 𝒫𝒫. Each
separation creates two new candidate problems whose solution sets differ only in the value
assigned to a particular variable. We use BFS (breadth first search) to traverse the solution sets
with bounding and pruning.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1761

Fig. 7. An example of the solution space of this problem

The main processing procedures for each candidate problem 𝒫𝒫𝑘𝑘 are:
1) Bounding: make a relaxation of 𝒫𝒫𝑘𝑘 to get a lower bound Θ𝑘𝑘 of the objective function in

this branch according to the relaxed problem 𝒫𝒫ℛ𝑘𝑘 and update the upper bound of the objective
function for problem 𝒫𝒫 by substituting a feasible solution into the objective function.

2) Branching: select a variable as the separation variable to further separate the solution set.
3) Pruning: check if the lower bound of this branch is too large that needs to be pruned.

These procedures’ detailed explanations are as follows, and for notational convenience, let 𝒫𝒫𝑘𝑘
denote the candidate problem of a branch and 𝐹𝐹𝑖𝑖 denote the set of tasks which has been fixed
to be offloaded to ES 𝑠𝑠𝑖𝑖 in 𝒫𝒫𝑘𝑘.

4.2.1 Bounding
Bounding is the procedure to bound the upper bound and lower bound of each candidate
problem for pruning. Relaxing the problem to get the bound in a traditional method in branch
and bound algorithm. For the current candidate problem 𝒫𝒫𝑘𝑘, it is too complex to solve since
the assignment cost of each task is tightly relate to the offloading strategy of other tasks, e.g.,
the assignment cost of each task is unknown at the beginning. Thus, we can get the relaxed
problem 𝒫𝒫ℛ𝑘𝑘 by fixing the assignment of each task relative to each ES before solving the
problem. In the current candidate problem 𝒫𝒫𝑘𝑘 , some tasks’ assignment has been decided.
Therefore, we can first compute the total weighted inference latency of an ES 𝑠𝑠𝑖𝑖 only
considering the tasks have been decided to be offload to it. Then, for each task 𝑗𝑗 whose
assignment has not been decided, the assignment cost 𝐶𝐶𝑖𝑖𝑖𝑖 equals to the increment of the total
weighted inference latency of 𝑠𝑠𝑖𝑖 after assigning task 𝑗𝑗 to 𝑠𝑠𝑖𝑖:

 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖(𝑗𝑗) − 𝑇𝑇𝑖𝑖 , (15)
where 𝑇𝑇𝑖𝑖 denotes the existing total weighted inference latency of tasks in 𝐹𝐹𝑖𝑖 utilizing SWRTF
and 𝑇𝑇𝑖𝑖(𝑗𝑗) is the new total weighted inference latency of tasks in 𝐹𝐹𝑖𝑖⋃{𝑗𝑗} utilizing SWRTF. The
relaxed problem 𝒫𝒫ℛ𝑘𝑘 can be formalized as:

𝒫𝒫ℛ𝑘𝑘: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋

𝑇𝑇 ′

(16)
𝑠𝑠.𝑡𝑡.

𝐶𝐶1: �𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,

 𝐶𝐶2: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚,
where 𝑇𝑇′ = 1

𝑛𝑛
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1 is the average weighted assignment cost. Since 𝐶𝐶𝑖𝑖𝑖𝑖 is known,

0

1 2

3 4

X11=1 X11=0

X12=1 X12=0

5 6

X21=1 X21=0

7 8

X13=1 X13=0

9 10

X22=1 X22=0

11 12

X12=1 X12=0

13 14

X31=1 X31=0

1762 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

problem 𝒫𝒫ℛ𝑘𝑘 has an obvious solution 𝑋𝑋𝑘𝑘 by assigning every unassigned task 𝑗𝑗 ∈ ⋃ 𝐹𝐹𝑖𝑖𝑚𝑚
𝑖𝑖=1 to

the ES 𝑠𝑠𝑖𝑖𝑗𝑗 that minimizes 𝐶𝐶𝑖𝑖𝑖𝑖. Substituting this solution into 𝒫𝒫ℛ𝑘𝑘 yields the lower bound of
this branch, denoted by Θ𝑘𝑘 . It is obvious that 𝑋𝑋𝑘𝑘 is a feasible solution for 𝒫𝒫𝑘𝑘 , so we can
calculate a valid objective function value 𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of the initial problem 𝒫𝒫 by substituting 𝑋𝑋𝑘𝑘
into 𝒫𝒫𝑘𝑘. Since the problem seeks for minimum objective function value, 𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is also the
upper bound Ω of 𝒫𝒫.

Function 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒫𝒫𝑘𝑘)
1: Θ𝑘𝑘 ← 0, 𝐽𝐽𝑘𝑘 ← tasks that have not been determined to be offloaded to which ES in 𝒫𝒫𝑘𝑘;
2: for 𝑖𝑖 from 1 to 𝑚𝑚 do
3: F𝑖𝑖 ← set of tasks have been determined to be offloaded to s𝑖𝑖;
4: T𝑖𝑖 ← the total weighted inference latency of F𝑖𝑖 according to SWRTF;
5: Θ𝑘𝑘 ← Θ𝑘𝑘 + T𝑖𝑖;
6: foreach 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 do
7: for 𝑖𝑖 from 1 to 𝑚𝑚 do
8: T𝑖𝑖(𝑗𝑗) ← the total weighted inference latency of F𝑖𝑖 ∪ {𝑗𝑗} according to SWRTF;
9: C𝑖𝑖𝑖𝑖 ← T𝑖𝑖(𝑗𝑗) − T𝑖𝑖;
10: foreach 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 do
11: 𝑖𝑖∗ ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖{C𝑖𝑖𝑖𝑖};
12: for 𝑖𝑖 from 1 to 𝑚𝑚 do
13: x𝑖𝑖𝑖𝑖 ← 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓;
14: x 𝑖𝑖∗𝑗𝑗 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;
15: Θ𝑘𝑘 ← Θ𝑘𝑘 + T 𝑖𝑖∗𝑗𝑗;
16: return 𝑋𝑋,Θ𝑘𝑘

4.2.2 Branching
Branching is the procedure to separate the solution space of the problem into different sub-
problems for traversing. To select a 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝑋𝑋 to be the separation variable, i.e., separate the
problem according to the value of 𝑥𝑥𝑖𝑖𝑖𝑖, we compute a “re-offloading profit” 𝛿𝛿𝑖𝑖𝑖𝑖 for each ES 𝑠𝑠𝑖𝑖
and each task 𝑗𝑗 that has not been determined to be offloaded to which ES in the current
candidate problem, that is, 𝑗𝑗 ∉ ⋃ 𝐹𝐹𝑖𝑖𝑚𝑚

𝑖𝑖=1 . Let 𝑋𝑋𝑘𝑘(𝑖𝑖) denote the solution by modifying the
feasible solution 𝑋𝑋𝑘𝑘 with re-offloading task 𝑗𝑗 to ES 𝑠𝑠𝑖𝑖. It is obvious that 𝑋𝑋𝑘𝑘(𝑖𝑖) is also a feasible
solution for 𝒫𝒫𝑘𝑘. Then 𝛿𝛿𝑖𝑖𝑖𝑖 can be defined as the reduction of the objective function 𝑇𝑇 in 𝒫𝒫𝑘𝑘:

 𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑇𝑇(𝑋𝑋𝑘𝑘)− 𝑇𝑇(𝑋𝑋𝑘𝑘(𝑖𝑖)), (17)
where 𝑇𝑇(𝑋𝑋𝑘𝑘) denotes the value of objective function by substituting 𝑋𝑋𝑘𝑘 into problem 𝒫𝒫𝑘𝑘. The
selected separation variable 𝑥𝑥𝑖𝑖∗𝑗𝑗∗ is the one that has maximum 𝛿𝛿𝑖𝑖∗𝑗𝑗∗ among those with 𝑗𝑗 ∉
⋃ 𝐹𝐹𝑖𝑖𝑚𝑚
𝑖𝑖=1 in the candidate problem 𝒫𝒫𝑘𝑘 . Then, the solution set is further separated into two

subsets, one with 𝑥𝑥𝑖𝑖∗𝑗𝑗∗ = 1 and the other one with 𝑥𝑥𝑖𝑖∗𝑗𝑗∗ = 0.

Function 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑘𝑘 , X𝑘𝑘)
1: 𝐽𝐽𝑘𝑘 ← tasks that have not been determined to be offloaded to which ES in 𝒫𝒫𝑘𝑘;
2: 𝑇𝑇(𝑋𝑋𝑘𝑘) ← the value of objective function by substituting 𝑋𝑋𝑘𝑘 into problem 𝒫𝒫𝑘𝑘;
3: foreach 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 do
4: for 𝑖𝑖 from 1 to 𝑚𝑚 do
5: 𝑋𝑋𝑘𝑘(𝑖𝑖) ← 𝑋𝑋𝑘𝑘;
6: for 𝑙𝑙 from 1 to 𝑚𝑚 and 𝑙𝑙 ≠ 𝑖𝑖 do
7: 𝑥𝑥𝑙𝑙𝑙𝑙 ← 0; //here 𝑥𝑥𝑙𝑙𝑙𝑙 represents the variable in 𝑋𝑋𝑘𝑘(𝑖𝑖)
8: 𝑥𝑥𝑖𝑖𝑖𝑖 ← 1; //here 𝑥𝑥𝑖𝑖𝑖𝑖 represents the variable in 𝑋𝑋𝑘𝑘(𝑖𝑖)

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1763

9: 𝑇𝑇(𝑋𝑋𝑘𝑘(𝑖𝑖)) ← the value of objective function by substituting 𝑋𝑋𝑘𝑘(𝑖𝑖) into problem 𝒫𝒫𝑘𝑘;
10: 𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑇𝑇(𝑋𝑋𝑘𝑘) − 𝑇𝑇(𝑋𝑋𝑘𝑘(𝑖𝑖));
19: 𝑖𝑖, 𝑗𝑗 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑗𝑗{𝛿𝛿𝑖𝑖𝑖𝑖};
20: return 𝑖𝑖, 𝑗𝑗

4.2.3 Pruning
Pruning is the procedure to limit the time complexity of the traverse of solution space. To
avoid redundant computing, we safely discard some solution set based on two rules. First, as
described in the bounding procedure, we can maintain the upper bound Ω of the initial problem
𝒫𝒫 and compute a lower bound Θ𝑘𝑘 for each candidate problem 𝒫𝒫𝑘𝑘. If Θ𝑘𝑘 > Ω, this branch
should be pruned obviously since it is impossible to generate the optimal solution. Then,
during the BFS of the solution sets, we set a threshold 𝜔𝜔 of the maximum number of candidate
problems in each level. Particularly, the candidate problems in the same level are processed in
a round and if the number of candidate problems in a round exceeds 𝜔𝜔, those with maximum
lower bound Θ𝑘𝑘 are pruned.

4.2.4 Algorithm Design and Analysis
Algorithm 2 illustrates the pseudocode of our BBO algorithm. We maintain two problem sets
𝑄𝑄 and 𝑄𝑄′ for BFS and an upper bound Ω of the initial problem 𝒫𝒫 (line 1). The main loop of
this algorithm is the BFS process of the solution sets and each loop can be decomposed into
three steps. In step1, we compute the lower bound Θ𝑘𝑘 and feasible solution 𝑋𝑋𝑘𝑘 of the candidate
problem 𝒫𝒫𝑘𝑘 utilizing a function 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒫𝒫𝑘𝑘) (line 4). In step2, if the lower bound Θ𝑘𝑘
of 𝒫𝒫𝑘𝑘 is not greater than Ω, we update the upper bound Ω (lines 6-7) and select a separation
variable 𝑥𝑥𝑖𝑖∗𝑗𝑗∗ for branching with the function 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑘𝑘, X𝑘𝑘) (lines 8-11). After
conducting step1 and step2 for each candidate problem in this round (line 3), we check if the
problem set for next round is too big and remove some candidate problems if necessary (lines
12-14). At last, we return the solution with minimum objective function value (lines 21-22).
There are 𝑚𝑚𝑚𝑚 processing rounds and we need to process at most 𝜔𝜔 candidate problems each
round and the time complexity of each candidate problem is 𝑂𝑂(𝑛𝑛2 log𝑛𝑛). Thus, the time
complexity of BBO algorithm is 𝑂𝑂(𝜔𝜔𝜔𝜔𝜔𝜔3 log𝑛𝑛).

Algorithm 2. BBO (Branch and Bound Optimization)
Input: The EDs set 𝐷𝐷, the ESs set 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑚𝑚}, the initial problem 𝒫𝒫
1: Initialize the problem set of this round 𝑄𝑄 ← {𝒫𝒫} and the problem set of next round

𝑄𝑄′ ← ∅, upper bound Ω ← ∞;
2: for 𝑧𝑧 from 1 to 𝑚𝑚𝑚𝑚 do
3: foreach 𝒫𝒫𝑘𝑘 ∈ 𝑄𝑄 do
4: [Θ𝑘𝑘 , X𝑘𝑘] ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒫𝒫𝑘𝑘);
5: if Θ𝑘𝑘 ≤ Ω then
6: 𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝒫𝒫𝑘𝑘(X𝑘𝑘);
7: Ω ← min {Ω,𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣};
8: [𝑖𝑖∗, 𝑗𝑗∗] ← 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑘𝑘 , X𝑘𝑘);
9: 𝒫𝒫𝑥𝑥 ← 𝒫𝒫𝑘𝑘 with 𝑋𝑋𝑖𝑖∗𝑗𝑗∗ = 1;
10: 𝒫𝒫𝑦𝑦 ← 𝒫𝒫𝑘𝑘 with 𝑋𝑋𝑖𝑖∗𝑗𝑗∗ = 0;
11: 𝑄𝑄′ ← 𝑄𝑄′ ∪ {𝒫𝒫𝑥𝑥 ,𝒫𝒫𝑦𝑦};
12: while |𝑄𝑄′| > 𝜔𝜔 do
13: 𝒫𝒫𝑟𝑟 ← the problem with max lower bound Θ𝑟𝑟 in 𝑄𝑄′;
14: 𝑄𝑄′ ← 𝑄𝑄′\{𝒫𝒫𝑟𝑟};

1764 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

15: 𝑄𝑄 ← 𝑄𝑄′;
16: 𝑄𝑄′ ← ∅;
17: 𝒫𝒫𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒫𝒫𝑡𝑡∈𝑄𝑄{𝑇𝑇𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣};
18: 𝑋𝑋𝑡𝑡 ← the solution of 𝒫𝒫𝑡𝑡;
19: return 𝑋𝑋𝑡𝑡;

Since BBO gives the offloading strategy 𝑋𝑋, the partition strategy 𝑃𝑃 and scheduling strategy Φ
can be given accordingly based on Section 4.1.

5. Implementation and Evaluation
In this section, we first introduce the prototype setup for our experiment, and then compare
our scheme with several existing schemes.

5.1 Prototype Setup
To evaluate the performance of our scheme, we build a heterogeneous device-edge system
prototype. We use two Laptops to act as the edge servers to assist the end devices in executing
their inference tasks, one equipped with a 6-core 2.60GHz Intel CPU and16-GB RAM and the
other one equipped with a 4-core 1.60GHz Intel CPU and 8-GB RAM. The end devices are
composed of two Raspberry Pis, each of them equipped with a 4-core ARM Cortex-A72 CPU,
a JetsonTX2 equipped with a 4-core ARM Cortex-A57 CPU, a Jetson xavierNX equipped with
a 6-core ARM V8 CPU. All end devices are connected to the edge server through LAN. We
use the pretrained DNN models from the standard implementation from famous package
PyTorch. An AlexNet model is deployed on Raspberry Pi1, a MobileNet_V2 model is
deployed on Raspberry Pi2, a ResNe18 model is deployed on the JetsonTX2 and a VGG19
model is deployed on the Jetson xavierNX. Let the priority of the tasks on the four end devices
be 1, 2, 3, and 4, respectively. The settings are listed in Table 2. We use tiny-ImageNet [21],
a subset of the ILSVRC2012 classification dataset, as our dataset.

Table 2. Experimental Settings
Symbol Device Info Inference model Priority

Pi4B1 Raspberry Pi 4B with a 4-core
ARM Cortex-A72 CPU AlexNet 1

Pi4B2 Raspberry Pi 4B with a 4-core
ARM Cortex-A72 CPU MobileNet-V2 2

Jetson-TX2 JetsonTX2 with a 4-core ARM
Cortex-A57 CPU ResNet18 3

Jetson-NX Jetson xavierNX with a 6-core
ARM V8 CPU VGG19 4

Laptop-6c16g Laptop with a 6-core 2.60GHz Intel
CPU and16-GB RAM

Laptop-4c8g Laptop with a 4-core 1.60GHz Intel
CPU and 8-GB RAM

5.2 Benchmarks
We evaluate our scheme by comparing the performance with four naive schemes and a SOTA
(state-of-the-art) scheme as follows:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1765

• Local-Only (LO): All inference tasks are executed locally.
• Edge-Only (EO): All EDs offload their tasks to the edge servers without DNN partition,

the selection of the edge server to offload is random and the execution order of tasks on
the server is FCFS.

• DADS [7] with random allocation and FCFS scheduling (RA-FS): We first use DADS
to compute the optimal partition of each task for each ES, and then randomly allocate
tasks to ESs where tasks are scheduled in the FCFS manner.

• DADS with random allocation and SWTRF scheduling (RA): We first use DADS to
compute the optimal partition of each task for each ES, and then randomly allocate tasks
to ESs where tasks are scheduled in the SWTRF manner.

• CCORAO [22]: This is an SOTA (state-of-the-art) algorithm for cloud assisted mobile
edge computing in vehicular networks. The main idea of CCORA is to decide the
offloading strategy and resource allocation strategy iteratively. We modify it to our
problem POSP, i.e., deciding the offloading strategy and scheduling strategy iteratively.

5.3 Experimental Results

Fig. 8. The inference latency of different models on different devices.

We first test the inference latency of each task on different devices. It can be seen in Fig. 8
that the computing capacity of different devices varies and the inference latency when tasks
are executed locally is too high to support some real-time applications. Thus, we need to
carefully design the collaborative inference scheme to reduce the inference latency in this
heterogeneous system.

Then we conduct multiple experiments by modifying the bandwidth between devices. The
bandwidth configurations for the experiments are shown in Table 3. We use the four different
bandwidth configurations to simulate different network conditions of the system.
Configuration1 simulates the situation that the overall network condition of the system is good,
Configuration2 simulates the situation that the overall network condition of the system is bad,
Configuration3 simulates the situation that the network condition between different devices
varies and Configuration4 simulates the situation that the network conditions between all end
devices to the 2 ESs has a large gap.

1766 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

Table 3. Four bandwidth configurations
Bandwidth Configuration1 Bandwidth Configuration2

 Laptop-
6c16g

Laptop-
4c8g

 Laptop-
6c16g

Laptop-
4c8g

Pi4B1 5.0 Mbps 5.0 Mbps Pi4B1 0.5 Mbps 0.5 Mbps
Pi4B2 5.0 Mbps 5.0 Mbps Pi4B2 0.5 Mbps 0.5 Mbps

Jetson-TX2 5.0 Mbps 5.0 Mbps Jetson-TX2 0.5 Mbps 0.5 Mbps
Jetson-NX 5.0 Mbps 5.0 Mbps Jetson-NX 0.5 Mbps 0.5 Mbps

Bandwidth Configuration3 Bandwidth Configuration4

 Laptop-
6c16g

Laptop-
4c8g

 Laptop-
6c16g

Laptop-
4c8g

Pi4B1 1.0 Mbps 0.5 Mbps Pi4B1 0.1 Mbps 5.0 Mbps
Pi4B2 0.7 Mbps 1.2 Mbps Pi4B2 0.1 Mbps 5.0 Mbps

Jetson-TX2 1.2 Mbps 0.5 Mbps Jetson-TX2 0.1 Mbps 5.0 Mbps
Jetson-NX 0.3 Mbps 2.9 Mbps Jetson-NX 0.1 Mbps 5.0 Mbps

Table 4 shows the partition and offloading strategies for tasks given by CIS at different

configurations, where 2/11 means the model AlexNet has 11 layers and is partitioned at the
2nd layer, 0/11 means offloading the entire task to the edge server and 11/11 means executing
the entire task locally. We can draw from the results that the better the network condition, the
earlier the tasks are offloaded. When the system suffers adverse network conditions, the end
devices tend to execute their tasks locally.

Table 4. Partition and offloading strategy at different configurations.

Bandwidth Configuration1 Bandwidth Configuration2
 Partition Offloading Partition Offloading

Pi4B1 2/11 𝑠𝑠1 Pi4B1 11/11 𝑠𝑠1
𝑑𝑑2 0/55 𝑠𝑠2 𝑑𝑑2 22/55 𝑠𝑠2
𝑑𝑑3 0/18 𝑠𝑠1 𝑑𝑑3 18/18 𝑠𝑠1
𝑑𝑑4 0/22 𝑠𝑠1 𝑑𝑑4 22/22 𝑠𝑠2

Bandwidth Configuration3 Bandwidth Configuration4

 Partition Offloading Partition Offloading
Pi4B1 2/11 𝑠𝑠1 Pi4B1 2/11 𝑠𝑠1
𝑑𝑑2 22/55 𝑠𝑠1 𝑑𝑑2 0/55 𝑠𝑠2
𝑑𝑑3 18/18 𝑠𝑠1 𝑑𝑑3 0/18 𝑠𝑠1
𝑑𝑑4 0/22 𝑠𝑠2 𝑑𝑑4 0/22 𝑠𝑠1

Fig. 9 shows the average weighted inference latency of different schemes. It can be seen

that our scheme CIS has the similar performance to CCORAO, both of which can reduce about
29% to 71% on the average weighted inference latency compared to the other four naïve
schemes. Further analysis of the experimental results reveals that the result of LO is stable but
can’t be optimal, the result of RO is influenced by network conditions, when the network is
poor, it may lead to intolerable latency, and the results of RA-FS and RA are relatively better
since they make some improvement to LO and RO. CIS and CCORAO jointly considers DNN
partition, task offloading and scheduling, so they can always obtain the optimal solutions when
the problem space is small.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1767

Fig. 9. The average weighted inference latency of different schemes at different configurations.

5.4 Simulation Experiments
In this section, a series of simulation experiments are conducted to further evaluate the
performance of our proposed scheme CIS. Initially, we evaluate the performance of CIS with
different network conditions in Section 5.4.1. Then we test the schemes when the size and
number of tasks change in Section 5.4.2. At last, the robustness of CIS with different
computational capacities patterns for the multiple edge servers and devices is validated in
Section 5.4.3. For the numerical analysis, the computational capacities of EDs, the
computational capacities of ESs and the bandwidth between ED to ES take a uniform
distribution in the range of [1, 5] FLOPS, [10, 20] FLOPS and [0.1, 2.0] Mbps, respectively.
The DNN models in our experiments include: AlexNet, MobileNet_V2, ResNet18 and
VGG19.

5.4.1 Performance with different network conditions
In this section, we evaluate the performance of CIS with different network conditions. The
simulation scenario has 12 EDs and 6 ESs, the computational capacities of EDs are: [1.2, 1.4,
1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 2.9, 2.3, 4.0], the computational capacities of ESs are: [11, 15,
17.5, 20, 24, 22], the priorities of tasks on the EDs are: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. An
AlexNet model is deployed 𝑑𝑑1, 𝑑𝑑5 , 𝑑𝑑9 , a MobileNet_V2 model is deployed 𝑑𝑑2 , 𝑑𝑑6 , 𝑑𝑑10, a
ResNet18 model is deployed 𝑑𝑑3, 𝑑𝑑7, 𝑑𝑑11, and a VGG19 model is deployed 𝑑𝑑4, 𝑑𝑑8, 𝑑𝑑12. For
convenience, we set the bandwidth between all devices the same. Fig. 10 shows the simulation
results at difference bandwidth. The inference latency of CIS and CCORAO are similar and
always smaller than that of other schemes since the problem space is small and they can always
get the optimal solution. The inference latency of LO still does not vary with bandwidth and
with the continuous improvement of network bandwidth, the performances of other five
schemes are also improving. At the beginning, the improvement is quite significant since the
network condition is the main bottleneck at this time. When the bandwidth is high enough,
this improvement gets smaller as the computational capacity is the main bottleneck at this time.
Overall, our proposed scheme CIS has a well performance at different network conditions.

1768 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

Fig. 10. Average weighted inference latency at difference bandwidth.

5.4.2 Performance with different numbers of tasks
In this section, we evaluate the performance of CIS with different numbers of tasks. We fix
100 ESs whose computational capacities are randomly taken from [10, 20] FLOPS. Then we
conduct a series of experiments with different number of EDs, e.g., different number of tasks.
From each number of EDs, we conduct the experiments for 50 times. For each experiment, the
computational capacities of the EDs are randomly taken from [1, 5] FLOPS, the DNN model
deployed on it is randomly picked from AlexNet, MobileNet_V2, ResNet18 and VGG19 and
the bandwidth between an ED and an ES is randomly taken from [0.1, 2.0] Mbps. We take the
results of scheme LO as the baseline and compute the relative average weighted inference
latency for other five schemes, e.g., the average weighted inference latency of other scheme
divided by that of LO. Then the average of results of the 50 times experiments is taken to
compare different schemes. Fig. 11 shows the simulation results. There are four main
observations regarding these results:

 The performance of each scheme decreases as the number of tasks increases. This is
intuitive since the number and computational capacities of the ESs are fixed.

 RO is always the worst scheme and can lead to more than 140% average weighted
inference latency compared to LO. This is because we randomly select the ES to offload
for each task, which means many tasks may be offloaded to the same ES, thus increasing
the result. Likely, RA-FS and RA can also have worse performance compared to LO since
the selection of ESs to offload is random. They are better than RO since they will first
partition the DNN models, which can reduce the computation overhead of the ESs.

 The performance gap between CIS and RA-FS or RA increases as the number of tasks
increases, because the number of tasks offloaded to the same ES is small at the beginning,
that is, the scheduling strategy of tasks has little impact on the results. The more the tasks,
the more important it is to decide proper offloading strategy and scheduling strategy.

 Compared to CCORAO, when the number of tasks is small, the advantage of CIS is not
obvious since they can both get the optimal solutions. However, as the number of tasks
increases, CCORAO cannot conduct enough rounds of iteration to get convergence.
Although CIS also discard some subproblems to limit its complexity, our careful design
of heuristic rules for discarding subproblems does have an undeniable impact on the
results.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1769

Fig. 11. Relative average weighted inference latency of different numbers of Tasks

5.4.3 Performance with different computational capacities patterns
In this section, we validate the robustness of CIS with different computational capacities
patterns for the multiple edge servers and devices. We fix the number of EDs and ESs 300 and
100 respectively. For each DNN model, there are 75 EDs deployed with it. The computational
capacities of ESs and EDs are randomly taken from [10, 20] FLOPS and [1, 5] FLOPS
respectively. We conduct the experiments for 100 times and compare the relative average
weighted inference latency for other five schemes. The results are shown in Fig. 12. Compared
with RO, RA-FS and RA, the performance our scheme CIS has obvious advantages. Overall,
the inference latency when taking CIS is always lower. What’s more, the results of CIS are
less dispersed, which means unacceptable results rarely occur. This is mainly due to the fact
that the first three strategies randomly select the offloading strategy, which is obviously not
feasible when the number of tasks is large. When it comes to CCORAO and CIS, both of them
almost always demonstrates a certain level of performance improvement compared to the
baseline scheme LO. However, the results of CIS exhibit a more concentrated distribution and
a lower highest inference latency. This indicates our carefully designed heuristic rules for
discarding subproblems in Section 4.2.3 do make sense.

1770 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

Fig. 12. Relative average weighted inference latency with different computational capacities patterns

6. Conclusion
In this paper, we study the DNN inference acceleration in a heterogeneous edge computing
scenario. We present a comprehensive analysis of the collaborative inference in the
heterogeneous scenario and point out the complexity of this problem. A scheme CIS is
proposed which jointly combines DNN partition, task offloading and task scheduling to
accelerate the DNN inference tasks. Extensive experiments are conducted to evaluate our
scheme. With a detailed analysis of evaluation results, CIS are validated to be more effective
for improving the average weighted inference latency of the system.

Acknowledgement
This work was supported in part by the Science and Technology Project of State Grid Co.,
LTD (Research on data aggregation and dynamic interaction technology of enterprise-level
real-time measurement data center, 5108-202218280A-2-399-XG).

References
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.521, pp.436-444, May, 2015.

Article (CrossRef Link)
[2] J. Chen, and X. Ran, “Deep Learning With Edge Computing: A Review,” in Proc. of Proceedings

of the IEEE, vol.107, no.8, pp.1655-1674, Aug. 2019. Article (CrossRef Link)
[3] J. Chai, and A. Li, “Deep Learning in Natural Language Processing: A State-of-the-Art Survey,”

in Proc. of 2019 International Conference on Machine Learning and Cybernetics (ICMLC), pp.
1-6, 2019. Article (CrossRef Link)

[4] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural network for large
vocabulary conversational speech recognition,” in Proc. of 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pp.4960-4964, 2016.
Article (CrossRef Link)

LO: 100

R
el

at
ive

 A
ve

ra
ge

 W
ei

gh
te

d
In

fe
re

nc
e

La
te

nc
y (

%
)

Relative Average Weighted Inference Latency With
 Different Computational Capacities Patterns

RO RA-FS RA CCORAO CIS

25

50

75

100

125

150

175

200

https://doi.org/10.1038/nature14539
https://doi.org/10.1109/JPROC.2019.2921977
https://doi.org/10.1109/ICMLC48188.2019.8949185
https://doi.org/10.1109/ICASSP.2016.7472621

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1771

[5] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “MoDNN: Local distributed mobile
computing system for Deep Neural Network,” in Proc. of Design, Automation & Test in Europe
Conference & Exhibition, pp.1396-1401, 2017. Article (CrossRef Link)

[6] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Stoica, “Low
Latency Geo-distributed Data Analytics,” ACM SIGCOMM Computer Communication Review,
vol.45, no.4, pp.421-434, Aug. 2015. Article (CrossRef Link)

[7] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic Adaptive DNN Surgery for Inference Acceleration
on the Edge,” in Proc. of IEEE INFOCOM 2019 - IEEE Conference on Computer Communications,
pp.1423-1431, 2019. Article (CrossRef Link)

[8] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A.
Rabinovich, “Going Deeper with Convolutions,” in Proc. of 2015 lEEE Conference on Computer
Vision and Pattern Recognition, pp.l-9, 2015. Article (CrossRef Link)

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recognition,” in Proc.
of 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778, 2016.
Article (CrossRef Link)

[10] M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, “Task Partitioning and Offloading in DNN-Task
Enabled Mobile Edge Computing Networks,” IEEE Transactions on Mobile Computing, vol.22,
no.4, pp.2435-2445, Apr. 2023. Article (CrossRef Link)

[11] X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint Multiuser DNN Partitioning and
Computational Resource Allocation for Collaborative Edge Intelligence,” IEEE Internet of Things
Journal, vol.8, no.12, pp.9511-9522, 2021. Article (CrossRef Link)

[12] T. Mohammed, C. Joe-Wong, R. Babbar, and M. Di Francesco, “Distributed Inference
Acceleration with Adaptive DNN Partitioning and Offloading,” in Proc. of IEEE INFOCOM 2020
- IEEE Conference on Computer Communications, pp.854-863, 2020. Article (CrossRef Link)

[13] C.-Y. Yang, J.-J. Kuo, J.-P. Sheu, and K.-J. Zheng, “Cooperative Distributed Deep Neural
Network Deployment with Edge Computing,” in Proc. of ICC 2021 - IEEE International
Conference on Communications, pp.1-6, 2021. Article (CrossRef Link)

[14] Z. Liao, W. Hu, J. Huang, and J. Wang, “Joint multi-user DNN partitioning and task offloading in
mobile edge computing,” Ad Hoc Networks, vol.144, 2023. Article (CrossRef Link)

[15] L. Shi, Z. Xu, Y. Sun, Y. Shi, Y. Fan, and X. Ding, “A DNN inference acceleration algorithm
combining model partition and task allocation in heterogeneous edge computing system,” Peer-
to-Peer Networking and Applications, vol.14, pp.4031-4045, 2021. Article (CrossRef Link)

[16] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neurosurgeon:
Collaborative Intelligence Between the Cloud and Mobile Edge,” ACM SIGARCH Computer
Architecture News, vol.45, no.1, pp.615-629, 2017. Article (CrossRef Link)

[17] S. Zhang, Y. Li, X. Liu, S. Guo, W. Wang, J. Wang, B. Ding, and D. Wu, “Towards Real-time
Cooperative Deep Inference over the Cloud and Edge End Devices,” Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies, vol.4, no.2, pp.1-24, Jun. 2020.
Article (CrossRef Link)

[18] N. Wang, Y. Duan, and J. Wu, “Accelerate Cooperative Deep Inference via Layer-wise Processing
Schedule Optimization,” in Proc. of 2021 International Conference on Computer Communications
and Networks, pp.1-9, 2021. Article (CrossRef Link)

[19] Y. Duan, and J. Wu, “Joint Optimization of DNN Partition and Scheduling for Mobile Cloud
Computing,” in Proc. of ICPP '21: Proceedings of the 50th International Conference on Parallel
Processing, pp.1-10, 2021. Article (CrossRef Link)

[20] G. T. Ross, and R. M. Soland, “A branch and bound algorithm for the generalized assignment
problem,” Mathematical programming, vol.8, pp.91-103, Dec. 1975. Article (CrossRef Link)

[21] Y. Le, and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol.7, no.7, 2015.
https://cs231n.stanford.edu/reports/2015/pdfs/yle_project.pdf

[22] J. Zhao, Q. Li, Y. Gong and K. Zhang, “Computation Offloading and Resource Allocation for
Cloud Assisted Mobile Edge Computing in Vehicular Networks,” IEEE Transactions on Vehicular
Technology, vol.68, no.8, pp.7944-7956, 2019. Article (CrossRef Link)

https://doi.org/10.23919/DATE.2017.7927211
https://doi.org/10.1145/2829988.2787505
https://doi.org/10.1109/INFOCOM.2019.8737614
http://doi.org/10.1109/CVPR.2015.7298594
http://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/TMC.2021.3114193
https://doi.org/10.1109/JIOT.2020.3010258
https://doi.org/10.1109/INFOCOM41043.2020.9155237
https://doi.org/10.1109/ICC42927.2021.9500668
https://doi.org/10.1016/j.adhoc.2023.103156
https://doi.org/10.1007/s12083-021-01223-1
https://doi.org/10.1145/3093337.3037698
https://doi.org/10.1145/3397315
https://doi.org/10.1109/ICCCN52240.2021.9522274
https://doi.org/10.1145/3472456.3472468
https://doi.org/10.1007/BF01580430
https://doi.org/10.1109/TVT.2019.2917890

1772 Meizhao Liu et al.: Collaborative Inference for Deep Neural Networks in Edge Environments

[23] Y. Chen, K. Wu, Q. Zhang, “From QoS to QoE: A Tutorial on Video Quality Assessment”, IEEE
Communications Surveys & Tutorials, vol.17, no.2, pp.1126-1165, 2015. Article (CrossRef Link)

Meizhao Liu received her PhD degree in Power System and Automation from Zhejiang
University, Hangzhou, China, in 2009. Currently, she is a core member of the Data Operation
Management Department at the State Grid Jiangsu Electric Power Co., Ltd. Her research
interests include data modeling, big data, and task scheduling. To date, she has published six
papers in refereed journals and conferences and received several provincial and ministerial
awards for science and technology innovation.

Yingcheng Gu received his master's degree in Software Engineering from Xi'an Jiaotong
University, Xi'an, China, in 2018. He is currently working on big data processing and analysis
at the State Grid Jiangsu Electric Power Co., Ltd. Information \& Telecommunication Branch.
His main research interests include big data processing and artificial intelligence.

Sen Dong received the BS degree from the Department of Computer Science and
Technology, Nanjing University, Nanjing, China, in 2023, where he is currently working
towards the MS degree under the supervision of Associate Professor Sheng Zhang. He is a
member of the State Key Laboratory for Novel Software Technology. Currently, his research
interests include edge computing and collaborative inference.

Liu Wei received her master's degree in Computer Engineering from Peking University,
Beijing, China, in 2021. She is now working at the State Grid Jiangsu Electric Power Co.,
Ltd. Information & Telecommunic.

https://doi.org/10.1109/COMST.2014.2363139

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 7, July 2024 1773

Kai Liu received his master's degree in Computer Technology from Sun Yat-sen University,
Guangzhou, China, in 2018. He is currently working on data management and big data
analysis at the State Grid Jiangsu Electric Power Co., Ltd. Information & Telecommunication
Branch. His main research interests include big data modeling and application. To date, he
has published nine papers in refereed journals and conferences.

Yuting Yan received the BS degree in financial engineering at Business School, Nanjing
University, China, in 2021. She is currently working toward the PhD degree in the
Department of Computer Science and Technology, Nanjing University, under the supervision
of associate professor Sheng Zhang. She is a member of the State Key Laboratory for Novel
Software Technology. She has published 10 papers on conferences or journals including IEEE
SECON, IEEE INFOCOM and TMC. Currently, her research interests include mobile edge
intelligence and video analytics.

Yu Song received his master's degree in Software Engineering from Southeast University,
Nanjing, China, in 2019. He is a member of the Data Operation Management Department at
the State Grid Jiangsu Electric Power Co., Ltd. Information & Telecommunication Branch.
His research interests include machine learning and big data analytics. To date, he has
published four papers, including those appeared in Knowledge Based Systems and IJCAI.

Huanyu Cheng received his bachelor's degree in Computer Science and Technology from
Wuhan University, Wuhan, China. He is now working on cloud computing, big data
processing, and artificial intelligence research at the State Grid Jiangsu Electric Power Co.,
Ltd. Information & Telecommunication Branch. To date, he has published three papers in
refereed journals and conferences.

Lei Tang received his bachelor's degree in Computer Science and Technology from the
Department of Computer Engineering, Southeast University, Nanjing, China, in 2000, and
received his master's degree in Power System and Automation from Nanjing University of
Technology, Nanjing, China, in 2009. He is a senior engineer and his main research interests
include data analytics, data modeling, domain-wide data management, and customer behavior
research.

Sheng Zhang is an associate professor with Nanjing University, and a member of the State
Key Lab. for Novel Software Technology. He received the BS and PhD degrees from Nanjing
University. His current research interests include edge computing and edge intelligence. He
regularly publishes in scholarly journals and conference proceedings, such as JSAC, TMC,
TPDS, TC, MobiHoc, ICDCS, and INFOCOM. He is the recipient of CCFSys Best Paper
Award (2023), IEEE ICPADS Outstanding Paper Runner-Up Award (2021), IEEE ICCCN
Best Paper Award (2020), IEEE MASS Best Paper Runner-Up Award (2012), ACM Nanjing
Rising Star (2020), ACM China Doctoral Dissertation Nomination Award (2015). He is a
senior member of IEEE and CCF, and a member of ACM.

