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Abstract 
 
Recent advances in deep neural networks (DNNs) have greatly improved the accuracy and 
universality of various intelligent applications, at the expense of increasing model size and 
computational demand. Since the resources of end devices are often too limited to deploy a 
complete DNN model, offloading DNN inference tasks to cloud servers is a common approach 
to meet this gap. However, due to the limited bandwidth of WAN and the long distance 
between end devices and cloud servers, this approach may lead to significant data transmission 
latency. Therefore, device-edge collaborative inference has emerged as a promising paradigm 
to accelerate the execution of DNN inference tasks where DNN models are partitioned to be 
sequentially executed in both end devices and edge servers. Nevertheless, collaborative 
inference in heterogeneous edge environments with multiple edge servers, end devices and 
DNN tasks has been overlooked in previous research. To fill this gap, we investigate the 
optimization problem of collaborative inference in a heterogeneous system and propose a 
scheme CIS, i.e., collaborative inference scheme, which jointly combines DNN partition, task 
offloading and scheduling to reduce the average weighted inference latency. CIS decomposes 
the problem into three parts to achieve the optimal average weighted inference latency. In 
addition, we build a prototype that implements CIS and conducts extensive experiments to 
demonstrate the scheme’s effectiveness and efficiency. Experiments show that CIS reduces 
29% to 71% on the average weighted inference latency compared to the other four existing 
schemes. 
 
Keywords: Edge intelligence, Collaborative inference, Deep inference, Computation 
offloading. 
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1. Introduction 

In recent times, deep neural network (DNN), positioned as a cornerstone technology for 
Artificial Intelligence (AI) and Machine Learning (ML) [1], has achieved remarkable 
development. This technology has been widely applied in various fields including Computer 
Vision [2], Natural Language Processing [3] and speech recognition [4]. 

Nevertheless, with the improvement of universality and accuracy, the scale of DNN model 
is also growing, which means more memory and computational resources are required. For 
instance, when executing inference on a 224x224 image using VGG16, it entails processing 
over 138 million parameters through more than 15 billion operations. If executed on a Nexus 
5 smartphone, the task would take approximately 16 seconds [5]. This is obviously intolerable 
for some real-time tasks. Consequently, to meet the memory and computation requirements, 
DNN inference tasks are typically offloaded to cloud servers with extensive computational 
resources. However, this traditional cloud computing paradigm encounters several challenges. 
First, it struggles to meet the real-time requirements of some Internet of Things (IoT) 
applications when the network condition is poor. Then, massive data may impose a 
considerable burden on network communication and cloud server processing. What’s more, 
concerns regarding privacy leaks due to data transmission to the cloud also cannot be ignored 
[6]. To address these problems, device-edge collaborative inference has emerged as a 
promising paradigm to promote edge intelligence. 

Model partition is an important technology in collaborative inference. Motivated by the 
significant reduction of data size of some intermediate layers compared to that of input layer, 
a DNN model is partitioned so that the inference task can be sequentially executed on the end 
device and edge server. Proper partition can make full use of the computational resources of 
servers within limited communication overhead [7]. Most prior research on collaborative 
inference has been limited in the single scenario involving single task and single server. 
However, realistic scenarios often encompass the presence of multiple edge servers (ESs) and 
multiple end devices (EDs) with distinct DNN tasks. Meanwhile, different end devices and 
edge servers, encompassing smartphones, base stations, and gateways, may exhibit different 
computational capacities, forming the heterogeneous edge environments, in which 
collaborative inference needs to be considered. 

This paper studies the DNN partition, task offloading and scheduling problem in 
heterogeneous collaborative inference systems, which aims to minimize the average weighted 
inference latency for DNN tasks.  In this problem, each task can be partitioned at different 
layers according to the computational capacities of devices and network conditions, so we 
must determine the layers at which the DNN task is partitioned, i.e., partition strategy. 
Prior explorations have predominantly limited to the DNNs with chain topology. However, 
many advanced DNN models adopt DAG topology, e.g., GoogleNet [8] and ResNet [9], which 
brings new challenges to collaborative inference. Besides, each task can be offloaded to one 
of the servers in the system, so we must determine the server to which the task is offloaded, 
i.e., offloading strategy. What’s more, there can be more than one task offloaded to the same 
server, so we must determine the order in which the tasks are executed, i.e., scheduling 
strategy. The FCFS(First-Come-First-Serve) policy is commonly taken by previous works 
[11]. However, in real-world scenarios, different tasks often have different priorities. For 
example, in a smart home system, the priority of tasks responsible for security systems needs 
to be higher than those responsible for other tasks (such as audio control). When multiple tasks 
are offloaded to the same server, the scheduling strategy has an undeniable impact on their 
weighted inference latency. Hence, FCFS policy can hardly adapt to this priority scenario.  
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To fill these gaps, this paper deeply studies the collaboration of EDs and ESs in a 
heterogeneous scenario. We formulate this problem as a ILP problem and denote it as 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 
short for task Partition, Offloading and Scheduling Problem. Then a heuristic scheme CIS, i.e., 
collaborative inference scheme, is proposed for 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The main contributions of this paper 
are summarized as follows: 

1) This paper puts forward the collaborative inference in a heterogeneous scenario. The 
stated problem seeks to minimize the average weighted inference latency by 
optimizing partition strategy, scheduling strategy and offloading strategy.  

2) This paper builds a system model for heterogeneous collaborative inference, and 
proposes a scheme CIS to minimize average weighted inference latency based on this 
model. CIS decouples the optimization problem into three subproblems: DNN partition, 
task offloading and task scheduling.  

3) Based on DADS [7], a widely used scheme for DNN partition, algorithm MCP is 
proposed to deal with the partition for different DNN models, no matter what the 
topology it is. Then we design SWRTF policy for the task scheduling problem since 
they have different priorities. At last, CIS utilizes branch and bound to obtain the final 
strategies, which traverse all feasible solutions in a breadth first manner with proper 
pruning. 

4) Extensive experiments are conducted to verify the performance of this scheme. The 
comprehensive and in-depth analysis of the results demonstrates that our scheme can 
greatly reduce the inference latency compared with current approaches. 

2. Related Work 
Collaborative inference is a significant research direction in edge intelligence, which means 
end devices complete the DNN inference tasks with the assistance of edge servers or cloud 
servers.  

Kang et al. [16] initially proposed layer-wise partition of DNN models as an approach to 
enable collaborative inference. However, their approach is limited to linearly-structured DNNs 
and proved ineffective for more general Directed Acyclic Graph (DAG) structured DNNs. 
Given that many DNNs exhibit DAG structures, Hu et al. [7] modeled the partition of these 
DNNs as a min-cut problem and provided a method for computing optimal partition points 
using max-flow solutions. On this basis, they introduced a system named DADS (Dynamic 
Adaptive DNN Splitting) that can handle model partition in dynamic network environments. 
Zhang et al. [17] noted that the min-cut-based partition method has a high time complexity, 
making it challenging to adapt to scenarios with rapidly changing network conditions. 
Consequently, they simplified the problem and introduced a two-stage system called QDMP 
for finding the optimal partitioning point. Wang et al. [18] proposed a hierarchical scheduling 
optimization strategy called DeepInference-L. By executing computations and data transfers 
between layers in a pipelined manner, they further reduced the overall latency of collaborative 
inference. Furthermore, Duan et al. [19] considered the scenarios where multiple DNN 
inference tasks run on a single mobile device. They employed convex optimization techniques 
to comprehensively address multi-task partition and scheduling strategies. However, these 
studies only consider the scenarios of a single device and a single server, which is not 
applicable to general edge computing scenarios. 

Gao et al. [10] designed a dynamic evaluation strategy under a time slot model, dividing a 
DNN inference task into multiple subtasks and dynamically determining its offloading strategy. 
Tang et al. [11] proposed an iterative alternative optimization (IAO) algorithm to solve the 
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problem of task partition in a multi-user scenario. Mohammed et al. [12] proposed that in the 
context of fog computing, a DNN model can be divided into multiple parts, each of which can 
be executed at fog nodes or locally. Combined with matching theory, an adaptive dynamic 
task partition and scheduling system DINA was proposed, which can greatly reduce the 
inference latency. Although the aforementioned studies take the multiple devices into 
consideration, they ignore the fact that offloading all tasks to a single edge server would lead 
to issues of excessive load on that server and underutilization of resources on other servers.  

To address this problem, Yang et al. [13] introduced an edge-device collaborative inference 
system called CoopAI, which employs a novel partition algorithm to offload a DNN inference 
task onto multiple edge servers. By analyzing the characteristics of DNN inference, it permits 
servers to pre-fetch necessary data, reducing the cost of data exchange and consequently 
reducing inference latency. Liao et al. [14] delved into the DNN partitioning and task 
offloading challenges in heterogeneous edge computing scenarios. They conducted an analysis 
of the task offloading issue involving multiple terminal devices and multiple edge servers. 
Employing an optimal matching algorithm, they proposed an algorithm that comprehensively 
addresses both partitioning and offloading concerns, thereby reducing overall system inference 
latency and energy consumption. Shi et al. [15] presented an offline partitioning and 
scheduling algorithm, GSPI, for enhancing the speed of DNN inference tasks in a multi-user 
multi-server setting. However, it's important to note that they exclusively considered scenarios 
where all users execute the same DNN inference task. 

This paper focuses on the collaborative DNN inference problem under the scenario with 
multiple end devices and multiple edge servers. Given the varying computational capacities of 
end devices and their distinct upload bandwidths to different edge servers, the manner in which 
DNN models are partitioned and the selection of servers for tasks to offloading significantly 
impact the inference latency. By comprehensively considering multiple factors, we propose 
the collaborative inference scheme CIS for heterogeneous edge computing environments. 

3. System Model and Problem Formulation 
We first introduce the heterogeneous collaborative inference system mentioned above in 
Section 3.1. Then we formalized our problem with the target of minimizing average weighted 
inference latency and the decision variable involving partition strategy 𝑃𝑃, offloading strategy 
𝑋𝑋 and scheduling strategy Φ in Section 3.2. 

3.1 Heterogeneous Collaborative Inference System  
An edge computing system is comprised of a set of end devices and a set of resource-
constrained edge servers. As shown in Fig. 1, each ED is equipped with a pretrained DNN 
model and executes the DNN inference task of this model. To accelerate the execution of DNN 
inference tasks, each DNN model can be partitioned at layer-level and then offloaded to one 
of the ESs. The EDs and ESs are connected in a LAN, where each ES is accessible for each 
ED. 

We denote the set of 𝑛𝑛 end devices as 𝐷𝐷 = {𝑑𝑑1,𝑑𝑑2,⋯ , 𝑑𝑑𝑛𝑛}. For convenience, we use task 
𝑗𝑗  to denote the task on 𝑑𝑑𝑗𝑗 . Each end device 𝑑𝑑𝑗𝑗  is associated with two parameters: 𝑤𝑤𝑗𝑗  and 
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗). Here 𝑤𝑤𝑗𝑗 represents the priority of task 𝑗𝑗 and task with greater 𝑤𝑤𝑗𝑗 has a higher priority. 
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗) represents the computational capacity of ED 𝑑𝑑𝑗𝑗 measured in FLOPS. It worth nothing 
that in the heterogeneous system, these parameters of different EDs can be varying. In this 
paper, we assume all the tasks can be partitioned at most once, which means each task can 
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only be offloaded to at most one server.  
 

 
Fig. 1. Collaborative inference system in heterogeneous edge computing scenarios 

 
We denote the set of 𝑚𝑚  edge servers as 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑚𝑚} . Let 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖)  denote the 

computational capacity of 𝑠𝑠𝑖𝑖, measured in FLOPS. Let 𝑏𝑏𝑖𝑖𝑖𝑖 denote the bandwidth between 𝑠𝑠𝑖𝑖 
and 𝑑𝑑𝑗𝑗. In this paper, we assume that each 𝑏𝑏𝑖𝑖𝑖𝑖 is given and constant. ESs will pre-load the 
DNN models of the tasks offloaded to them. After intermediate data being sent to the server, 
the task will be added to a waiting list to wait for scheduling. Once a server is idle, it will select 
a task from the waiting list to execute, and the execution can’t be interrupted until the task is 
finished. Table 1 lists the main symbols used in this article. 

 
Table 1. Main notations 

Symbol Definition 
𝑠𝑠𝑖𝑖 The 𝑖𝑖th edge server 
𝑑𝑑𝑗𝑗  The 𝑗𝑗th end device 
𝑤𝑤𝑗𝑗  The priority of task 𝑗𝑗 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖) The computational capacity of ES 𝑠𝑠𝑖𝑖 (FLOPS) 
𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗) The computational capacity of ED 𝑑𝑑𝑗𝑗 (FLOPS) 
𝑏𝑏𝑖𝑖𝑖𝑖  The bandwidth between 𝑠𝑠𝑖𝑖 and 𝑑𝑑𝑗𝑗 
𝛷𝛷(𝑠𝑠𝑖𝑖) The scheduling strategy of tasks offloaded to 𝑠𝑠𝑖𝑖 
𝑝𝑝𝑗𝑗 The partition strategy of task 𝑗𝑗 

𝐿𝐿𝑗𝑗(𝑝𝑝) The local computation size of task 𝑗𝑗 with partition 𝑝𝑝 (FLOPs) 
𝐶𝐶𝑗𝑗(𝑝𝑝) The transmission data size of task 𝑗𝑗 with partition 𝑝𝑝 (FLOPs) 
𝑅𝑅𝑗𝑗(𝑝𝑝) The remote computation size of task 𝑗𝑗 with partition 𝑝𝑝 (FLOPs) 
𝑥𝑥𝑖𝑖𝑖𝑖  Binary decision variable, 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 indicates that task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖 
𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙  The latency of local computing when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖 
𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 The latency of data transmission when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖 
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𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  The latency of waiting for scheduling when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖 
𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  The latency of remote computing when task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖 
𝑇𝑇 The average weighted inference latency of the system 

3.2 System Model 

3.2.1 DNN Layer-level Computation and Output data Model 
DNN models are usually composed of a series of layers, such as convolutional layers, 
excitation layers, active layers, pooling layers and fully connected layers. To compute the 
inference latency of a DNN, we must analyze the computation and output data size of each 
layer of the DNN model.  

Layer-level Computational Cost: We measure the computational cost of each layer using 
FLoating point OPerations (FLOPs), which represents the number of basic mathematical 
operations (such as addition, subtraction, multiplication, etc.) to be performed. Similar 
methods have been used in [14]. Let 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) denote the computational cost of layer 𝑣𝑣. Since 
some layers, like active layer, have a very small computational cost, we just consider the main 
DNN layers whose computational cost has impact on the inference latency of the model as 
follows: 
• Convolutional Layer: Convolutional layer is one of the most basic layers in DNNs. It 

performs convolution operations on the input data through a set of convolution kernels to 
extract local features at different locations. The computational cost of convolution layer 
depends on the size of the input feature map and the size and number of the convolution 
kernel. For the convolution layer 𝑣𝑣 , assuming the size of the input feature map is 
𝑤𝑤𝑖𝑖𝑖𝑖 × ℎ𝑖𝑖𝑖𝑖, the size of the convolution kernel is 𝑤𝑤𝑘𝑘 × ℎ𝑘𝑘, and the number of channels of 
the input feature map is 𝐶𝐶𝑖𝑖𝑖𝑖, the number of channels of the output feature map is 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜, the 
size of stride is 𝑤𝑤𝑠𝑠 × ℎ𝑠𝑠, then its computational cost is: 

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) = �
𝑤𝑤𝑖𝑖𝑖𝑖 − 𝑤𝑤𝑘𝑘

𝑤𝑤𝑠𝑠
+ 1� ∗ �

ℎ𝑖𝑖𝑖𝑖 − ℎ𝑘𝑘
ℎ𝑠𝑠

+ 1� ∗ 𝐶𝐶𝑖𝑖𝑖𝑖 ∗ 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑤𝑤𝑘𝑘 ∗ ℎ𝑘𝑘 ∗ 2, (1) 

where �𝑤𝑤𝑖𝑖𝑖𝑖−𝑤𝑤𝑘𝑘
𝑤𝑤𝑠𝑠

+ 1� ∗ �ℎ𝑖𝑖𝑖𝑖−ℎ𝑘𝑘
ℎ𝑠𝑠

+ 1� represents the number of multiplicative operations 
required for each output position and it is also the number of additive operations required 
for each output position. 

• Fully Connected Layer: Fully connected layer is also one of the most basic layers in deep 
neural networks. By connecting each input neuron to an output neuron and giving each 
connection a weight, the features extracted from the previous layers are combined and 
integrated to generate the final output. For fully connected layer 𝑣𝑣, assuming that the 
dimension of the input feature vector is 𝑑𝑑𝑖𝑖𝑖𝑖 and the dimension of the output feature vector 
is 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜, then its computational cost is: 

 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣) = (𝑑𝑑𝑖𝑖𝑖𝑖 + (𝑑𝑑𝑖𝑖𝑖𝑖 − 1)) ∗ 𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜, (2) 
where 𝑑𝑑𝑖𝑖𝑖𝑖  denotes the multiplicative operation, and (𝑑𝑑𝑖𝑖𝑖𝑖 − 1)  denotes the additive 
operation. 

Output Data Size: We use 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) to denote the output data size of layer 𝑣𝑣. For layer 𝑣𝑣, 
assuming the size of its output feature map is 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 × ℎ𝑜𝑜𝑜𝑜𝑜𝑜, then the output data size of this 
layer 𝑣𝑣 is: 
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣) = 𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜 ∗ 𝑤𝑤𝑜𝑜𝑜𝑜𝑜𝑜 ∗ ℎ𝑜𝑜𝑜𝑜𝑜𝑜 , (3) 
 

If the tensor size of the input image is (3 × 224 × 224), the computation and output data size 
of the layers of MobileNet_V2 model are shown in Fig. 2. 
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Fig. 2. Computation and output data size of each layer of MobileNetV2 model. 

3.2.2 DNN Partition Model 
The inference process of DNN is actually a process of forward propagation, starting from the 
input layer and gradually moving forward, each layer conducts a series of calculations on its 
own input and sends the results to its subsequent layers as their input. Thus, given a DNN 
model 𝑀𝑀, we can represent 𝑀𝑀 as a DAG (directed acyclic graph) 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸 >, where 𝑣𝑣𝑖𝑖 ∈ 𝑉𝑉 
corresponds to one layer and the directed edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸 represents the dependency between 𝑣𝑣𝑖𝑖 
and 𝑣𝑣𝑗𝑗. It should be emphasized that each vertex may have multiple edges starting from it and 
multiple edges ending at it. For example, Fig. 3(a) shows a piece of GoogLeNet [8], which 
can be modeled as a DAG as shown in Fig. 3(b).  
 

  
(a) (b) 

Fig. 3. A piece of GoogLeNet (a) and the DAG corresponding to it (b) 
 

In the context of deep neural networks (DNNs), it should be noted that the computational 
cost and output size of each layer are different and independent of each other, which provides 
an opportunity for DNN partition. DNN partition is to divide a DNN model into two parts to 
execute them on different devices. Formally, we define 𝑝𝑝𝑗𝑗 =< 𝑉𝑉𝑗𝑗𝑙𝑙 ,𝑉𝑉𝑗𝑗𝑟𝑟 > as the partition of task 
𝑗𝑗  which partitions its vertex set 𝑉𝑉𝑗𝑗  into two disjoint subsets 𝑉𝑉𝑗𝑗𝑙𝑙  and 𝑉𝑉𝑗𝑗𝑟𝑟 . The layers 
corresponding to the vertex in 𝑉𝑉𝑗𝑗𝑙𝑙 are executed on an ED, and the layers corresponding to the 
vertex in 𝑉𝑉𝑗𝑗𝑟𝑟 are executed on an ES. Fig. 3(b) shows a partition of GoogLeNet mentioned 
above.  

Thus, as to task 𝑗𝑗 and one of its partitions 𝑝𝑝𝑗𝑗, the local computational cost is: 
 𝐿𝐿𝑗𝑗�𝑝𝑝𝑗𝑗� = � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)

𝑣𝑣∈𝑉𝑉𝑗𝑗
𝑙𝑙

, (4) 
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the transmission data size is: 
 𝐶𝐶𝑗𝑗�𝑝𝑝𝑗𝑗� = � 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣)

𝑣𝑣∈𝑉𝑉𝑗𝑗
𝑐𝑐

, (5) 

and the remote computational cost is: 
 𝑅𝑅𝑗𝑗�𝑝𝑝𝑗𝑗� = � 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)

𝑣𝑣∈𝑉𝑉𝑗𝑗
𝑟𝑟

, (6) 

where 𝑉𝑉𝑗𝑗𝑙𝑙 and 𝑉𝑉𝑗𝑗𝑟𝑟 denote the set of layers executed on the EDs and the set of layers executed on 
the ESs respectively. 𝑉𝑉𝑗𝑗𝑐𝑐 represents the set of layers that need to send their output to the ES, 
which means each layer in 𝑉𝑉𝑗𝑗𝑐𝑐 is belong to 𝑉𝑉𝑗𝑗𝑙𝑙 and has a successor layer in 𝑉𝑉𝑗𝑗𝑟𝑟. 

3.2.3 Task Scheduling Model 
In reality, there are often fewer edge servers than end devices, so it is common for multiple 

tasks to be offloaded to the same server. In our system, the server can only execute one task at 
a time, so tasks need to wait for scheduling before execution. As a result, the scheduling policy, 
specifically the execution order of tasks, has a great impact on the average weighted inference 
latency. In previous related works, they schedule the tasks in a first-come-first-service (FCFS) 
manner [11], but it can’t solve our problem well for tasks have different priorities. For example, 
suppose there are three tasks offloaded to the same server. We define the arrival time of a task 
as the time it takes before the intermediate data is sent to the server, including local computing 
time and data transmission time. Also, we the server computing time as the time of task 
execution on the server. Then the three task’s arrival time, server computing time and task 
priority are (5,5,3), (7,2,2), (3,6,1) respectively. Fig. 4 shows the results of two scheduling 
strategies, where the left one is according to FCFS and the right one is in another way. Their 
average weighted inference latencies are 83/3 and 24 respectively, which shows that different 
scheduling strategies have an important impact on inference latency. To formally represent the 
scheduling strategy, let 𝜙𝜙(𝑠𝑠𝑖𝑖) denote the task sequence on 𝑠𝑠𝑖𝑖, then the scheduling strategy of 
the system can be represented as Φ = {𝜙𝜙(𝑠𝑠1),𝜙𝜙(𝑠𝑠2),⋯ ,𝜙𝜙(𝑠𝑠𝑚𝑚)}. The kth scheduled task on 
𝑠𝑠𝑖𝑖 can be represented as 𝜙𝜙𝑘𝑘(𝑠𝑠𝑖𝑖), where 1 ≤ 𝑘𝑘 ≤ |𝜙𝜙(𝑠𝑠𝑖𝑖)|. 

 

 
Fig. 4. Two different scheduling strategies 

 

3.2.4 Task Offloading and Inference Latency Model 
In the heterogeneous system, due to the disparity in computational capacity and bandwidth 
between ESs, it is obvious that the task offloading strategy does affect the inference latency. 
Formally, we use a set of binary variables 𝑋𝑋 = {𝑥𝑥11,𝑥𝑥12,⋯ , 𝑥𝑥1𝑚𝑚,⋯ , 𝑥𝑥𝑛𝑛1,𝑥𝑥𝑛𝑛2,⋯ , 𝑥𝑥𝑛𝑛𝑛𝑛}  to 
denote the offloading strategy. Specifically, 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if and only if task 𝑗𝑗 is offloaded to ES 𝑠𝑠𝑖𝑖; 
otherwise, 𝑥𝑥𝑖𝑖𝑖𝑖 = 0. Since one task can only be offloaded to one ES, we can get that ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑚𝑚

𝑖𝑖=1 =
1,∀1 ≤ 𝑗𝑗 ≤ 𝑛𝑛.  
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Once a task is partitioned and decided to be offloaded to an ES, the execution of this task 
can be divided into four stages: local computing, data transmission, waiting for scheduling and 
remote computing. Therefore, if task 𝑗𝑗 is partitioned by 𝑝𝑝𝑗𝑗 and offloaded to ES 𝑠𝑠𝑖𝑖, its inference 
latency is: 
 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 +  𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , (7) 
where 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 denotes the latency of local computing: 
 𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝐿𝐿𝑗𝑗(𝑝𝑝𝑗𝑗)/𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗), (8) 
𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 denotes the latency of data transmission: 
 

𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
𝐶𝐶𝑗𝑗�𝑝𝑝𝑗𝑗�
𝑏𝑏𝑖𝑖𝑖𝑖

, (9) 

𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 denotes the latency of waiting for scheduling: 
 𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑡𝑡𝑖𝑖𝑗𝑗′

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 + 𝑡𝑡𝑖𝑖𝑗𝑗′
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,  𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 +  𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)   −  (𝑡𝑡𝑖𝑖𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑡𝑡𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡), (10) 

where 𝑗𝑗′ denotes the task scheduled before 𝑗𝑗 on 𝑠𝑠𝑖𝑖. Suppose 𝑗𝑗 is 𝜙𝜙𝑘𝑘(𝑠𝑠𝑖𝑖), then 𝑗𝑗′ is  𝜙𝜙𝑘𝑘−1(𝑠𝑠𝑖𝑖). 
𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 denotes the latency of remote computing: 

 𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑗𝑗(𝑝𝑝𝑗𝑗)/𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖). (11) 
Assuming that all tasks start at the same time, the average weighted inference latency of the 
entire system is: 

3.2.5 Problem Formulation 
The QoE [23] of the applications based on DNN model improves with the reduction of 
inference latency. Since different tasks have different priorities, we try to minimize the average 
weighted inference latency 𝑇𝑇  of the system by collaborative inference. Considering the 
computational capacity and network bandwidth of the system, an inference reduction problem 
is formulated in this subsection. We now refer to this optimization problem with partition 
strategy 𝑃𝑃 , offloading strategy 𝑋𝑋  and scheduling strategy Φ  as POSP, e.g. task Partition, 
Offloading and Scheduling Problem, and define it as follows: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑃𝑃,𝛷𝛷,𝑋𝑋

𝑇𝑇 

(12) 

𝑠𝑠.𝑡𝑡. 𝐶𝐶1:  𝑉𝑉𝑗𝑗𝑙𝑙 ∪ 𝑉𝑉𝑗𝑗𝑟𝑟 = 𝑉𝑉𝑗𝑗,𝑉𝑉𝑗𝑗𝑙𝑙 ∩ 𝑉𝑉𝑗𝑗𝑟𝑟 = ∅,∀1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 
 

𝐶𝐶2: �𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 

 𝐶𝐶3: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 
 𝐶𝐶4: 𝜙𝜙(𝑠𝑠𝑖𝑖) = {𝑗𝑗| 𝑥𝑥𝑖𝑖𝑖𝑖 = 1}. 
The optimization objective function 𝑇𝑇 is the average weighted inference latency of the entire 
system, which can be formulated as: 

 𝑇𝑇 =
1
𝑛𝑛
� � 𝑥𝑥𝑖𝑖𝑖𝑖𝑤𝑤𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖

𝑛𝑛

𝑗𝑗=1

𝑚𝑚

𝑖𝑖=1
. (13) 

Constraint 𝐶𝐶1 guarantees the valid of partition strategy of each task. Constraint 𝐶𝐶2 and 𝐶𝐶3 
manifest that one task can only be offloaded to one ES at most or even just be completed 
locally. Constraint 𝐶𝐶4 is used to guarantee t task sequence on 𝑠𝑠𝑖𝑖 is consistent with offloading 
strategy  𝑋𝑋. Due to the existence of multiple variables and the high coupling between variables, 
problem POSP is too complex to be solved directly. Thus, we need to give further analysis 
and decompose problem POSP to get the optimal strategies. 
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4. Algorithm Design 
We have modeled our problem as an optimization problem POSP and point out that it is 
complex owing to the existence of multiple decision variables. In this section, we first reveal 
several structural properties of our problem and then decompose the problem into three parts. 
After that, we propose an algorithm MCP for DNN partition, a scheduling policy SWRTF for 
task scheduling and an algorithm BBO for DNN allocation to solve POSP step by step. 

4.1 Problem Decomposition  
Since there are multiple sets of variables in POSP and the variables are coupled with each 
other, we need to decouple them to decompose the complex problem. The main idea of our 
scheme is to give the corresponding partition strategy 𝑃𝑃 and scheduling strategy Φ for each 
offloading strategy 𝑋𝑋, thus binding 𝑃𝑃 and Φ to 𝑋𝑋, which means as long as 𝑋𝑋 is determined, 𝑃𝑃 
and Φ can be determined accordingly. Then we just need to solve the new problem 𝒫𝒫 which 
only has 𝑋𝑋 as its decision variables. So, our scheme can be decomposed into three steps: 1) 
give the partition strategy 𝑃𝑃 for each offloading strategy 𝑋𝑋, 2) give the scheduling strategy Φ 
for each offloading strategy 𝑋𝑋, 3) generate the new problem 𝒫𝒫 which only has 𝑋𝑋 as its decision 
variables and solve this problem to give the optimal offloading strategy 𝑋𝑋. Since step 1) and 
2) has bound 𝑃𝑃 and Φ to 𝑋𝑋, so with the result of step 3), we can give the final optimal strategy 
𝑃𝑃, Φ and 𝑋𝑋 for problem POSP. 
 

 
Fig. 5. CIS flow 

4.1.1 DNN Partition 
For most DNN, they have many different partitions, which makes it more difficult for us to 
solve the problem. However, some partitions will lead to excessive inference latency thus 
almost impossible to become the optimal solution. Therefore, we can reduce the solution space 
by selecting an optimal partition 𝑝𝑝𝑖𝑖𝑖𝑖 for each DNN task 𝑗𝑗 when trying to offload it to ES 𝑠𝑠𝑖𝑖. 
Based on the method proposed in [7], we design an algorithm MCP, e.g., min-cut based 
partition, which first constructs a latency graph 𝐺𝐺′ for each task 𝑗𝑗 and ES 𝑠𝑠𝑖𝑖 based on the DAG 
𝐺𝐺  of the DNN model of task 𝑗𝑗  to convert the optimal partition problem to the minimum 
weighted s–t cut problem of 𝐺𝐺′ , and then get the optimal partition 𝑝𝑝𝑖𝑖𝑖𝑖  using a min-cut 
algorithm. 

 
Fig. 6. Constructing the latency graph 

 
For task 𝑗𝑗 and ES 𝑠𝑠𝑖𝑖, let 𝐺𝐺 =< 𝑉𝑉,𝐸𝐸 > denote the corresponding DAG of the DNN model 

of task 𝑗𝑗, we can construct a weighted DAG 𝐺𝐺′, e.g., its latency graph, as follows: 

POSP Bind P to XMCP P,Φ,XBBOBind Φ to X SWRTF

s

t

v V’
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1) Add a source node 𝑠𝑠 and a sink node 𝑡𝑡 to  𝐺𝐺′. 
2) Add the remote computing edges 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟: For each node  𝑣𝑣 ∈ 𝑉𝑉, add an edge from 𝑠𝑠 to 

𝑣𝑣, whose weight is 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)/𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑖𝑖), e.g., the time for executing this layer on  𝑠𝑠𝑖𝑖. 
3) Add the local computing edges 𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙: For each node  𝑣𝑣 ∈ 𝑉𝑉, add an edge from 𝑣𝑣 to 𝑡𝑡, 

whose weight is 𝑐𝑐𝑐𝑐𝑐𝑐(𝑣𝑣)/𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗), e.g., the time for executing this layer on  𝑑𝑑𝑗𝑗. 
4) Add the data transmission edges  𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡: It is worth nothing that the output data of a layer 

only need to be transmit at most once even if it has more than one successor layers. Thus, 
there are two conditions we add data transmission edges. 
a) For each node  𝑣𝑣 ∈ 𝑉𝑉, if it only has one successor 𝑣𝑣′ in 𝐺𝐺, add an edge from 𝑣𝑣 to 𝑣𝑣′, 

whose weight is 𝐶𝐶𝑗𝑗
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣))
𝑏𝑏𝑖𝑖𝑖𝑖

, i.e., the time for transmitting 𝑣𝑣’s output data from 𝑑𝑑𝑗𝑗 to 

𝑠𝑠𝑖𝑖. 
b) For each node  𝑣𝑣 ∈ 𝑉𝑉, if it has more than one successors in 𝐺𝐺, we first add a virtual 

node 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 to 𝐺𝐺′, then add an edge from 𝑣𝑣 to 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, whose weight is  𝐶𝐶𝑗𝑗
(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑣𝑣))
𝑏𝑏𝑖𝑖𝑖𝑖

, 

and then add an edge from 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 to all the successors of 𝑣𝑣 in 𝐺𝐺, whose weight is 
positive infinity. 

Fig. 6 shows an example of constructing the latency graph of a DAG. At this stage, the optimal 
partition problem has been converted to the minimum weighted s–t cut problem of the latency 
graph 𝐺𝐺′. For a s-t cut 𝐶𝐶 of 𝐺𝐺′, the edges in 𝐶𝐶 comprise three parts: remote computing edges, 
local computing edges and data transmission edges. Thus, the value of 𝐶𝐶 is exactly equal to 
the inference latency of the DNN task at the partition of 𝐶𝐶 without considering the time waiting 
for scheduling. Then we use a min-cut algorithm to get the minimum weighted s–t cut of 𝐺𝐺′, 
and get the optimal partition  𝑝𝑝𝑖𝑖𝑖𝑖 from this. In the following steps of determining scheduling 
and offloading strategies, we suppose task 𝑗𝑗 is partitioned at  𝑝𝑝𝑖𝑖𝑖𝑖 when offloaded to  𝑠𝑠𝑖𝑖. Now, 
we have bound 𝑃𝑃  to 𝑋𝑋 , i.e., the partition strategy 𝑃𝑃  can be determined accordingly when 
offloading strategy 𝑋𝑋  is determined. Since the time complexity of min-cut algorithm is 
𝑂𝑂(|𝑉𝑉|2|𝐸𝐸| ln |𝑉𝑉|), where |𝑉𝑉| is the number of nodes in the DAG and |𝐸𝐸| is the number of 
edges in the DAG, the time complexity of constructing the latency graph is 𝑂𝑂(|𝑉𝑉| + |𝐸𝐸|), the 
time complexity of MCP is 𝑂𝑂(𝑚𝑚𝑚𝑚|𝑉𝑉′|2|𝐸𝐸′| ln |𝑉𝑉′|), where |𝑉𝑉′| is the largest number of nodes 
in all the DAG and |𝐸𝐸′| is the largest number of edges in all the DAG. 
 

Algorithm 1. MCP 
Input: The computational capacity 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗) of ED 𝑑𝑑𝑗𝑗 and the DAG 𝐺𝐺𝑗𝑗 of the DNN model on 
𝑑𝑑𝑗𝑗, the computational capacity 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑠𝑠) of ES 𝑠𝑠𝑖𝑖, the bandwidth 𝑏𝑏𝑖𝑖𝑖𝑖  between 𝑑𝑑𝑗𝑗 and 𝑠𝑠𝑖𝑖. 
1:  for each ED 𝑑𝑑𝑗𝑗 ∈ 𝑫𝑫 do 
2:      for each ES 𝑠𝑠𝑖𝑖 ∈ 𝑺𝑺 do 
3:          𝐺𝐺′ ← latency_graph_construct(𝐺𝐺𝑗𝑗, 𝐶𝐶𝐶𝐶𝐶𝐶𝑑𝑑(𝑗𝑗), 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠(𝑠𝑠), 𝑏𝑏𝑖𝑖𝑖𝑖); 
4:           𝑝𝑝𝑖𝑖𝑖𝑖 ← min_cut(𝐺𝐺′); 
5:  return 𝑃𝑃 = {𝑝𝑝𝑖𝑖𝑖𝑖|1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚}; 

4.1.2 Task Scheduling 
To give the scheduling strategy Φ for each offloading strategy 𝑋𝑋, we design a new scheduling 
policy for tasks offloaded to the same ES called “shortest weighted remaining time first” 
(SWRTF). In particular, SWRTF has three rules: 
1) The ES will not be idle unless there are no tasks in the waiting list.  
2) Tasks are executed non-preemptively, that is, once a task starts executing, other tasks 

must wait until the execution of the task ends. 
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3) The task with shortest weighted remaining time 𝑅𝑅𝑅𝑅𝑗𝑗 will be scheduled first, where 𝑅𝑅𝑅𝑅𝑗𝑗 =
𝑡𝑡𝑖𝑖𝑖𝑖𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑤𝑤𝑗𝑗. 

For a given task 𝑗𝑗 and ES 𝑠𝑠𝑖𝑖, if task 𝑗𝑗 is decided to be offloaded to 𝑠𝑠𝑖𝑖, then the partition  𝑝𝑝𝑖𝑖𝑖𝑖 
of the task 𝑗𝑗 are given as Section 4.1.1 mentioned. Suppose the set of tasks offloaded to 𝑠𝑠𝑖𝑖 is 
𝐽𝐽𝑖𝑖 = {𝑗𝑗1, 𝑗𝑗2,⋯ , 𝑗𝑗𝑞𝑞} . Then for each 𝑗𝑗𝑘𝑘 in 𝐽𝐽𝑖𝑖, the local computation 𝐿𝐿𝑗𝑗𝑘𝑘(𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘), transmission data 
size 𝐶𝐶𝑗𝑗𝑘𝑘(𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘)  and remote computation 𝑅𝑅𝑗𝑗𝑘𝑘(𝑝𝑝𝑖𝑖𝑗𝑗𝑘𝑘)  of 𝑗𝑗𝑘𝑘  are given. Thus 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 , 𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  and 

𝑡𝑡𝑖𝑖𝑗𝑗𝑘𝑘
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 can be obtained from Eqs. (8)(9)(11). Thus, the arrival time, i.e., the time of local 

computing and data transmission, and the shortest weighted remaining time of each task are 
given. Then the scheduling strategy 𝜙𝜙(𝑠𝑠𝑖𝑖) for these tasks can be given based on SWRTF. The 
same goes for other ESs. Now, we have bound Φ to 𝑋𝑋, i.e., scheduling strategy Φ can be 
determined accordingly when offloading strategy 𝑋𝑋 is determined.  

4.1.3 Task Offloading 
Based on the practical consideration on DNN partition and task scheduling in Section 4.1.1 

and 4.1.2, we can bind partition strategy 𝑃𝑃 and scheduling strategy Φ to offloading strategy 𝑋𝑋, 
e.g., we just need to decide the offloading strategy 𝑋𝑋 , then the partition strategy 𝑃𝑃  and 
scheduling strategy Φ  will be decided accordingly. As a result, our initial optimization 
problem POSP can be transformed into an 0-1 integer optimization problem which only has 
one set of variables 𝑋𝑋: 

𝒫𝒫: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋

𝑇𝑇 

(14) 

𝑠𝑠.𝑡𝑡. 𝐶𝐶1:  𝑥𝑥𝑖𝑖𝑖𝑖 = 1
𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦
�⎯⎯⎯� 𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑖𝑖𝑖𝑖 , 

 
𝐶𝐶2: �𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 

 𝐶𝐶3: 𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 
 𝐶𝐶4: 𝜙𝜙(𝑠𝑠𝑖𝑖) = {𝑗𝑗| 𝑥𝑥𝑖𝑖𝑖𝑖 = 1}. 

 

Actually, this is a variant of general assignment problem (GAP) where the cost of assigning a 
task to a server, i.e., its weighted inference latency 𝑤𝑤𝑗𝑗𝑇𝑇𝑖𝑖𝑖𝑖, can be changed by the other tasks 
assigned to the same server since the waiting time 𝑡𝑡𝑖𝑖𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is affected by 𝑋𝑋. Motivated by the 
algorithm proposed by Ross, G. Terry, and Richard M. Soland [20], we design a heuristic 
algorithm BBO, i.e., branch and bound optimization to solve this problem. The detailed 
introduction of BBO is in Section 4.2. Once the offloading strategy 𝑋𝑋 is determined by BBO, 
partition strategy 𝑃𝑃  and scheduling strategy Φ  can be determined accordingly, thus 
determining the solution of the initial problem POSP. 

4.2 Branch and Bound Optimization Algorithm (BBO) 
Actually, branch and bound is a way to traverse the entire solution space of the problem with 
pruning to limit the time complexity. Branch is for generating the solution and bound is for 
pruning. According to branch and bound, the solution set for 𝒫𝒫 is separated into two mutually 
exclusive and collectively exhaustive subsets based on the 0-1 dichotomy of variable values, 
so as to the subsets created. Fig. 7 gives an example of separating the solution set of 𝒫𝒫. Each 
separation creates two new candidate problems whose solution sets differ only in the value 
assigned to a particular variable. We use BFS (breadth first search) to traverse the solution sets 
with bounding and pruning.  
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Fig. 7. An example of the solution space of this problem 
 

The main processing procedures for each candidate problem 𝒫𝒫𝑘𝑘 are:  
1) Bounding: make a relaxation of 𝒫𝒫𝑘𝑘 to get a lower bound  Θ𝑘𝑘 of the objective function in 

this branch according to the relaxed problem 𝒫𝒫ℛ𝑘𝑘 and update the upper bound of the objective 
function for problem 𝒫𝒫 by substituting a feasible solution into the objective function. 

2) Branching: select a variable as the separation variable to further separate the solution set. 
3) Pruning: check if the lower bound of this branch is too large that needs to be pruned. 

These procedures’ detailed explanations are as follows, and for notational convenience, let 𝒫𝒫𝑘𝑘 
denote the candidate problem of a branch and 𝐹𝐹𝑖𝑖 denote the set of tasks which has been fixed 
to be offloaded to ES 𝑠𝑠𝑖𝑖 in 𝒫𝒫𝑘𝑘. 

4.2.1 Bounding 
Bounding is the procedure to bound the upper bound and lower bound of each candidate 
problem for pruning. Relaxing the problem to get the bound in a traditional method in branch 
and bound algorithm. For the current candidate problem 𝒫𝒫𝑘𝑘, it is too complex to solve since 
the assignment cost of each task is tightly relate to the offloading strategy of other tasks, e.g., 
the assignment cost of each task is unknown at the beginning. Thus, we can get the relaxed 
problem 𝒫𝒫ℛ𝑘𝑘 by fixing the assignment of each task relative to each ES before solving the 
problem. In the current candidate problem 𝒫𝒫𝑘𝑘 , some tasks’ assignment has been decided. 
Therefore, we can first compute the total weighted inference latency of an ES 𝑠𝑠𝑖𝑖  only 
considering the tasks have been decided to be offload to it. Then, for each task 𝑗𝑗  whose 
assignment has not been decided, the assignment cost 𝐶𝐶𝑖𝑖𝑖𝑖 equals to the increment of the total 
weighted inference latency of 𝑠𝑠𝑖𝑖 after assigning task 𝑗𝑗 to 𝑠𝑠𝑖𝑖: 

 𝐶𝐶𝑖𝑖𝑖𝑖 = 𝑇𝑇𝑖𝑖(𝑗𝑗) − 𝑇𝑇𝑖𝑖 , (15) 
where  𝑇𝑇𝑖𝑖 denotes the existing total weighted inference latency of tasks in 𝐹𝐹𝑖𝑖 utilizing SWRTF 
and  𝑇𝑇𝑖𝑖(𝑗𝑗) is the new total weighted inference latency of tasks in 𝐹𝐹𝑖𝑖⋃{𝑗𝑗} utilizing SWRTF. The 
relaxed problem 𝒫𝒫ℛ𝑘𝑘 can be formalized as: 

𝒫𝒫ℛ𝑘𝑘: 𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋

𝑇𝑇 ′ 

(16) 
𝑠𝑠.𝑡𝑡. 

𝐶𝐶1:  �𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚

𝑖𝑖=1

≤ 1,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛, 

 𝐶𝐶2:  𝑥𝑥𝑖𝑖𝑖𝑖 = 1 𝑜𝑜𝑜𝑜 0,∀ 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛,∀ 1 ≤ 𝑖𝑖 ≤ 𝑚𝑚, 
where 𝑇𝑇′ = 1

𝑛𝑛
∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑛𝑛

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1  is the average weighted assignment cost. Since 𝐶𝐶𝑖𝑖𝑖𝑖 is known, 

0
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3 4

X11=1 X11=0

X12=1 X12=0
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X21=1 X21=0

7 8

X13=1 X13=0
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problem 𝒫𝒫ℛ𝑘𝑘 has an obvious solution 𝑋𝑋𝑘𝑘 by assigning every unassigned task 𝑗𝑗 ∈ ⋃ 𝐹𝐹𝑖𝑖𝑚𝑚
𝑖𝑖=1  to 

the ES 𝑠𝑠𝑖𝑖𝑗𝑗  that minimizes 𝐶𝐶𝑖𝑖𝑖𝑖. Substituting this solution into 𝒫𝒫ℛ𝑘𝑘 yields the lower bound of 
this branch, denoted by Θ𝑘𝑘 . It is obvious that 𝑋𝑋𝑘𝑘  is a feasible solution for 𝒫𝒫𝑘𝑘 , so we can 
calculate a valid objective function value 𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 of the initial problem  𝒫𝒫 by substituting 𝑋𝑋𝑘𝑘 
into 𝒫𝒫𝑘𝑘. Since the problem seeks for minimum objective function value, 𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 is also the 
upper bound Ω of 𝒫𝒫. 
 

Function 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒫𝒫𝑘𝑘) 
1:    Θ𝑘𝑘 ← 0, 𝐽𝐽𝑘𝑘 ← tasks that have not been determined to be offloaded to which ES in 𝒫𝒫𝑘𝑘; 
2:    for 𝑖𝑖 from 1 to 𝑚𝑚 do 
3:        F𝑖𝑖 ← set of tasks have been determined to be offloaded to s𝑖𝑖; 
4:        T𝑖𝑖 ← the total weighted inference latency of F𝑖𝑖 according to SWRTF; 
5:        Θ𝑘𝑘 ← Θ𝑘𝑘 + T𝑖𝑖; 
6:    foreach 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 do 
7:        for 𝑖𝑖 from 1 to 𝑚𝑚 do 
8:            T𝑖𝑖(𝑗𝑗) ← the total weighted inference latency of F𝑖𝑖 ∪ {𝑗𝑗} according to SWRTF; 
9:            C𝑖𝑖𝑖𝑖 ← T𝑖𝑖(𝑗𝑗) − T𝑖𝑖; 
10:   foreach 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 do 
11:       𝑖𝑖∗ ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖{C𝑖𝑖𝑖𝑖}; 
12:       for 𝑖𝑖 from 1 to 𝑚𝑚 do 
13:            x𝑖𝑖𝑖𝑖 ← 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓; 
14:       x 𝑖𝑖∗𝑗𝑗 ← 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡;  
15:       Θ𝑘𝑘 ← Θ𝑘𝑘 + T 𝑖𝑖∗𝑗𝑗; 
16:   return  𝑋𝑋,Θ𝑘𝑘 

4.2.2 Branching 
Branching is the procedure to separate the solution space of the problem into different sub-
problems for traversing. To select a 𝑥𝑥𝑖𝑖𝑖𝑖 ∈ 𝑋𝑋 to be the separation variable, i.e., separate the 
problem according to the value of  𝑥𝑥𝑖𝑖𝑖𝑖, we compute a “re-offloading profit” 𝛿𝛿𝑖𝑖𝑖𝑖 for each ES 𝑠𝑠𝑖𝑖 
and each task 𝑗𝑗  that has not been determined to be offloaded to which ES in the current 
candidate problem, that is,  𝑗𝑗 ∉ ⋃ 𝐹𝐹𝑖𝑖𝑚𝑚

𝑖𝑖=1 . Let  𝑋𝑋𝑘𝑘(𝑖𝑖) denote the solution by modifying the 
feasible solution 𝑋𝑋𝑘𝑘 with re-offloading task 𝑗𝑗 to ES 𝑠𝑠𝑖𝑖. It is obvious that 𝑋𝑋𝑘𝑘(𝑖𝑖) is also a feasible 
solution for  𝒫𝒫𝑘𝑘. Then 𝛿𝛿𝑖𝑖𝑖𝑖 can be defined as the reduction of the objective function 𝑇𝑇 in 𝒫𝒫𝑘𝑘: 

 𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑇𝑇(𝑋𝑋𝑘𝑘)− 𝑇𝑇(𝑋𝑋𝑘𝑘(𝑖𝑖)), (17) 
where 𝑇𝑇(𝑋𝑋𝑘𝑘) denotes the value of objective function by substituting 𝑋𝑋𝑘𝑘 into problem 𝒫𝒫𝑘𝑘. The 
selected separation variable 𝑥𝑥𝑖𝑖∗𝑗𝑗∗  is the one that has maximum 𝛿𝛿𝑖𝑖∗𝑗𝑗∗  among those with 𝑗𝑗 ∉
⋃ 𝐹𝐹𝑖𝑖𝑚𝑚
𝑖𝑖=1  in the candidate problem 𝒫𝒫𝑘𝑘 . Then, the solution set is further separated into two 

subsets, one with 𝑥𝑥𝑖𝑖∗𝑗𝑗∗ = 1 and the other one with  𝑥𝑥𝑖𝑖∗𝑗𝑗∗ = 0. 
 

Function 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑘𝑘 , X𝑘𝑘) 
1:    𝐽𝐽𝑘𝑘 ← tasks that have not been determined to be offloaded to which ES in 𝒫𝒫𝑘𝑘; 
2:    𝑇𝑇(𝑋𝑋𝑘𝑘) ← the value of objective function by substituting 𝑋𝑋𝑘𝑘 into problem 𝒫𝒫𝑘𝑘; 
3:    foreach 𝑗𝑗 ∈ 𝐽𝐽𝑘𝑘 do 
4:        for 𝑖𝑖 from 1 to 𝑚𝑚 do 
5:            𝑋𝑋𝑘𝑘(𝑖𝑖) ← 𝑋𝑋𝑘𝑘; 
6:            for 𝑙𝑙 from 1 to 𝑚𝑚  and 𝑙𝑙 ≠ 𝑖𝑖 do 
7:                𝑥𝑥𝑙𝑙𝑙𝑙 ← 0;       //here 𝑥𝑥𝑙𝑙𝑙𝑙  represents the variable in 𝑋𝑋𝑘𝑘(𝑖𝑖) 
8:            𝑥𝑥𝑖𝑖𝑖𝑖 ← 1;           //here 𝑥𝑥𝑖𝑖𝑖𝑖  represents the variable in 𝑋𝑋𝑘𝑘(𝑖𝑖) 
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9:            𝑇𝑇(𝑋𝑋𝑘𝑘(𝑖𝑖)) ← the value of objective function by substituting 𝑋𝑋𝑘𝑘(𝑖𝑖) into problem 𝒫𝒫𝑘𝑘; 
10:          𝛿𝛿𝑖𝑖𝑖𝑖 = 𝑇𝑇(𝑋𝑋𝑘𝑘) − 𝑇𝑇(𝑋𝑋𝑘𝑘(𝑖𝑖));                                      
19:   𝑖𝑖, 𝑗𝑗 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖,𝑗𝑗{𝛿𝛿𝑖𝑖𝑖𝑖}; 
20:   return 𝑖𝑖, 𝑗𝑗 

4.2.3 Pruning 
Pruning is the procedure to limit the time complexity of the traverse of solution space. To 
avoid redundant computing, we safely discard some solution set based on two rules. First, as 
described in the bounding procedure, we can maintain the upper bound Ω of the initial problem  
𝒫𝒫 and compute a lower bound Θ𝑘𝑘  for each candidate problem  𝒫𝒫𝑘𝑘. If Θ𝑘𝑘 > Ω, this branch 
should be pruned obviously since it is impossible to generate the optimal solution. Then, 
during the BFS of the solution sets, we set a threshold 𝜔𝜔 of the maximum number of candidate 
problems in each level. Particularly, the candidate problems in the same level are processed in 
a round and if the number of candidate problems in a round exceeds 𝜔𝜔, those with maximum 
lower bound Θ𝑘𝑘 are pruned. 

4.2.4 Algorithm Design and Analysis 
Algorithm 2 illustrates the pseudocode of our BBO algorithm. We maintain two problem sets 
𝑄𝑄 and  𝑄𝑄′ for BFS and an upper bound Ω of the initial problem 𝒫𝒫 (line 1). The main loop of 
this algorithm is the BFS process of the solution sets and each loop can be decomposed into 
three steps. In step1, we compute the lower bound Θ𝑘𝑘 and feasible solution 𝑋𝑋𝑘𝑘 of the candidate 
problem 𝒫𝒫𝑘𝑘 utilizing a function 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒫𝒫𝑘𝑘) (line 4). In step2, if the lower bound Θ𝑘𝑘 
of  𝒫𝒫𝑘𝑘 is not greater than Ω, we update the upper bound Ω (lines 6-7) and select a separation 
variable 𝑥𝑥𝑖𝑖∗𝑗𝑗∗ for branching with the function 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑘𝑘, X𝑘𝑘)  (lines 8-11). After 
conducting step1 and step2 for each candidate problem in this round (line 3), we check if the 
problem set for next round is too big and remove some candidate problems if necessary (lines 
12-14). At last, we return the solution with minimum objective function value (lines 21-22). 
There are 𝑚𝑚𝑚𝑚 processing rounds and we need to process at most 𝜔𝜔 candidate problems each 
round and the time complexity of each candidate problem is 𝑂𝑂(𝑛𝑛2 log𝑛𝑛). Thus, the time 
complexity of BBO algorithm is 𝑂𝑂(𝜔𝜔𝜔𝜔𝜔𝜔3 log𝑛𝑛). 
 

Algorithm 2. BBO (Branch and Bound Optimization) 
Input: The EDs set 𝐷𝐷, the ESs set 𝑆𝑆 = {𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑚𝑚}, the initial problem 𝒫𝒫 
1:    Initialize the problem set of this round 𝑄𝑄 ← {𝒫𝒫} and the problem set of next round 

𝑄𝑄′ ← ∅, upper bound Ω ← ∞; 
2:    for 𝑧𝑧 from 1 to 𝑚𝑚𝑚𝑚 do 
3:        foreach 𝒫𝒫𝑘𝑘 ∈ 𝑄𝑄 do 
4:            [Θ𝑘𝑘 , X𝑘𝑘] ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝒫𝒫𝑘𝑘); 
5:            if Θ𝑘𝑘 ≤ Ω then 
6:               𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ← 𝒫𝒫𝑘𝑘(X𝑘𝑘); 
7:               Ω ← min {Ω,𝑇𝑇𝑘𝑘𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣}; 
8:               [𝑖𝑖∗, 𝑗𝑗∗] ← 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝒫𝒫𝑘𝑘 , X𝑘𝑘); 
9:               𝒫𝒫𝑥𝑥 ← 𝒫𝒫𝑘𝑘 with 𝑋𝑋𝑖𝑖∗𝑗𝑗∗ = 1; 
10:             𝒫𝒫𝑦𝑦 ← 𝒫𝒫𝑘𝑘  with 𝑋𝑋𝑖𝑖∗𝑗𝑗∗ = 0;                                      
11:             𝑄𝑄′ ← 𝑄𝑄′ ∪ {𝒫𝒫𝑥𝑥 ,𝒫𝒫𝑦𝑦};    
12:   while |𝑄𝑄′| > 𝜔𝜔 do 
13:       𝒫𝒫𝑟𝑟 ← the problem with max lower bound Θ𝑟𝑟  in 𝑄𝑄′; 
14:       𝑄𝑄′ ← 𝑄𝑄′\{𝒫𝒫𝑟𝑟}; 
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15:   𝑄𝑄 ← 𝑄𝑄′; 
16:   𝑄𝑄′ ← ∅; 
17:   𝒫𝒫𝑡𝑡 ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝒫𝒫𝑡𝑡∈𝑄𝑄{𝑇𝑇𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣}; 
18:   𝑋𝑋𝑡𝑡 ← the solution of 𝒫𝒫𝑡𝑡; 
19:   return 𝑋𝑋𝑡𝑡; 

 
Since BBO gives the offloading strategy 𝑋𝑋, the partition strategy 𝑃𝑃 and scheduling strategy Φ 
can be given accordingly based on Section 4.1.  

5. Implementation and Evaluation 
In this section, we first introduce the prototype setup for our experiment, and then compare 
our scheme with several existing schemes. 

5.1 Prototype Setup 
To evaluate the performance of our scheme, we build a heterogeneous device-edge system 
prototype. We use two Laptops to act as the edge servers to assist the end devices in executing 
their inference tasks, one equipped with a 6-core 2.60GHz Intel CPU and16-GB RAM and the 
other one equipped with a 4-core 1.60GHz Intel CPU and 8-GB RAM. The end devices are 
composed of two Raspberry Pis, each of them equipped with a 4-core ARM Cortex-A72 CPU, 
a JetsonTX2 equipped with a 4-core ARM Cortex-A57 CPU, a Jetson xavierNX equipped with 
a 6-core ARM V8 CPU. All end devices are connected to the edge server through LAN. We 
use the pretrained DNN models from the standard implementation from famous package 
PyTorch. An AlexNet model is deployed on Raspberry Pi1, a MobileNet_V2 model is 
deployed on Raspberry Pi2, a ResNe18 model is deployed on the JetsonTX2 and a VGG19 
model is deployed on the Jetson xavierNX. Let the priority of the tasks on the four end devices 
be 1, 2, 3, and 4, respectively. The settings are listed in Table 2. We use tiny-ImageNet [21], 
a subset of the ILSVRC2012 classification dataset, as our dataset. 
 

Table 2. Experimental Settings 
Symbol Device Info Inference model Priority 

Pi4B1 Raspberry Pi 4B with a 4-core 
ARM Cortex-A72 CPU AlexNet 1 

Pi4B2 Raspberry Pi 4B with a 4-core 
ARM Cortex-A72 CPU MobileNet-V2 2 

Jetson-TX2 JetsonTX2 with a 4-core ARM 
Cortex-A57 CPU ResNet18 3 

Jetson-NX Jetson xavierNX with a 6-core 
ARM V8 CPU VGG19 4 

Laptop-6c16g Laptop with a 6-core 2.60GHz Intel 
CPU and16-GB RAM   

Laptop-4c8g Laptop with a 4-core 1.60GHz Intel 
CPU and 8-GB RAM   

5.2 Benchmarks 
We evaluate our scheme by comparing the performance with four naive schemes and a SOTA 
(state-of-the-art) scheme as follows: 
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• Local-Only (LO): All inference tasks are executed locally. 
• Edge-Only (EO): All EDs offload their tasks to the edge servers without DNN partition, 

the selection of the edge server to offload is random and the execution order of tasks on 
the server is FCFS. 

• DADS [7] with random allocation and FCFS scheduling (RA-FS): We first use DADS 
to compute the optimal partition of each task for each ES, and then randomly allocate 
tasks to ESs where tasks are scheduled in the FCFS manner. 

• DADS with random allocation and SWTRF scheduling (RA): We first use DADS to 
compute the optimal partition of each task for each ES, and then randomly allocate tasks 
to ESs where tasks are scheduled in the SWTRF manner. 

• CCORAO [22]: This is an SOTA (state-of-the-art) algorithm for cloud assisted mobile 
edge computing in vehicular networks. The main idea of CCORA is to decide the 
offloading strategy and resource allocation strategy iteratively. We modify it to our 
problem POSP, i.e., deciding the offloading strategy and scheduling strategy iteratively.  


5.3 Experimental Results 

 
Fig. 8. The inference latency of different models on different devices. 

 
We first test the inference latency of each task on different devices. It can be seen in Fig. 8 
that the computing capacity of different devices varies and the inference latency when tasks 
are executed locally is too high to support some real-time applications. Thus, we need to 
carefully design the collaborative inference scheme to reduce the inference latency in this 
heterogeneous system. 

Then we conduct multiple experiments by modifying the bandwidth between devices. The 
bandwidth configurations for the experiments are shown in Table 3. We use the four different 
bandwidth configurations to simulate different network conditions of the system. 
Configuration1 simulates the situation that the overall network condition of the system is good, 
Configuration2 simulates the situation that the overall network condition of the system is bad, 
Configuration3 simulates the situation that the network condition between different devices 
varies and Configuration4 simulates the situation that the network conditions between all end 
devices to the 2 ESs has a large gap. 
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Table 3. Four bandwidth configurations 
Bandwidth Configuration1  Bandwidth Configuration2 

 Laptop-
6c16g 

Laptop-
4c8g 

  Laptop-
6c16g 

Laptop-
4c8g 

Pi4B1 5.0 Mbps 5.0 Mbps  Pi4B1 0.5 Mbps 0.5 Mbps 
Pi4B2 5.0 Mbps 5.0 Mbps  Pi4B2 0.5 Mbps 0.5 Mbps 

Jetson-TX2 5.0 Mbps 5.0 Mbps  Jetson-TX2 0.5 Mbps 0.5 Mbps 
Jetson-NX 5.0 Mbps 5.0 Mbps  Jetson-NX 0.5 Mbps 0.5 Mbps 

 
Bandwidth Configuration3  Bandwidth Configuration4 

 Laptop-
6c16g 

Laptop-
4c8g 

  Laptop-
6c16g 

Laptop-
4c8g 

Pi4B1 1.0 Mbps 0.5 Mbps  Pi4B1 0.1 Mbps 5.0 Mbps 
Pi4B2 0.7 Mbps 1.2 Mbps  Pi4B2 0.1 Mbps 5.0 Mbps 

Jetson-TX2 1.2 Mbps 0.5 Mbps  Jetson-TX2 0.1 Mbps 5.0 Mbps 
Jetson-NX 0.3 Mbps 2.9 Mbps  Jetson-NX 0.1 Mbps 5.0 Mbps 

 
Table 4 shows the partition and offloading strategies for tasks given by CIS at different 

configurations, where 2/11 means the model AlexNet has 11 layers and is partitioned at the 
2nd layer, 0/11 means offloading the entire task to the edge server and 11/11 means executing 
the entire task locally. We can draw from the results that the better the network condition, the 
earlier the tasks are offloaded. When the system suffers adverse network conditions, the end 
devices tend to execute their tasks locally. 

 
Table 4. Partition and offloading strategy at different configurations. 

Bandwidth Configuration1  Bandwidth Configuration2 
 Partition Offloading   Partition Offloading 

Pi4B1 2/11 𝑠𝑠1  Pi4B1 11/11 𝑠𝑠1 
𝑑𝑑2 0/55 𝑠𝑠2  𝑑𝑑2 22/55 𝑠𝑠2 
𝑑𝑑3 0/18 𝑠𝑠1  𝑑𝑑3 18/18 𝑠𝑠1 
𝑑𝑑4 0/22 𝑠𝑠1  𝑑𝑑4 22/22 𝑠𝑠2 

 
Bandwidth Configuration3  Bandwidth Configuration4 

 Partition Offloading   Partition Offloading 
Pi4B1 2/11 𝑠𝑠1  Pi4B1 2/11 𝑠𝑠1 
𝑑𝑑2 22/55 𝑠𝑠1  𝑑𝑑2 0/55 𝑠𝑠2 
𝑑𝑑3 18/18 𝑠𝑠1  𝑑𝑑3 0/18 𝑠𝑠1 
𝑑𝑑4 0/22 𝑠𝑠2  𝑑𝑑4 0/22 𝑠𝑠1 

 
Fig. 9 shows the average weighted inference latency of different schemes. It can be seen 

that our scheme CIS has the similar performance to CCORAO, both of which can reduce about 
29% to 71% on the average weighted inference latency compared to the other four naïve 
schemes. Further analysis of the experimental results reveals that the result of LO is stable but 
can’t be optimal, the result of RO is influenced by network conditions, when the network is 
poor, it may lead to intolerable latency, and the results of RA-FS and RA are relatively better 
since they make some improvement to LO and RO. CIS and CCORAO jointly considers DNN 
partition, task offloading and scheduling, so they can always obtain the optimal solutions when 
the problem space is small. 
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Fig. 9. The average weighted inference latency of different schemes at different configurations. 

 

5.4 Simulation Experiments 
In this section, a series of simulation experiments are conducted to further evaluate the 
performance of our proposed scheme CIS. Initially, we evaluate the performance of CIS with 
different network conditions in Section 5.4.1. Then we test the schemes when the size and 
number of tasks change in Section 5.4.2. At last, the robustness of CIS with different 
computational capacities patterns for the multiple edge servers and devices is validated in 
Section 5.4.3. For the numerical analysis, the computational capacities of EDs, the 
computational capacities of ESs and the bandwidth between ED to ES take a uniform 
distribution in the range of [1, 5] FLOPS, [10, 20] FLOPS and [0.1, 2.0] Mbps, respectively. 
The DNN models in our experiments include: AlexNet, MobileNet_V2, ResNet18 and 
VGG19. 

5.4.1 Performance with different network conditions 
In this section, we evaluate the performance of CIS with different network conditions. The 
simulation scenario has 12 EDs and 6 ESs, the computational capacities of EDs are: [1.2, 1.4, 
1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 2.9, 2.3, 4.0], the computational capacities of ESs are: [11, 15, 
17.5, 20, 24, 22], the priorities of tasks on the EDs are: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. An 
AlexNet model is deployed 𝑑𝑑1, 𝑑𝑑5 , 𝑑𝑑9 , a MobileNet_V2 model is deployed 𝑑𝑑2 , 𝑑𝑑6 , 𝑑𝑑10, a 
ResNet18 model is deployed 𝑑𝑑3, 𝑑𝑑7, 𝑑𝑑11, and a VGG19 model is deployed 𝑑𝑑4, 𝑑𝑑8, 𝑑𝑑12. For 
convenience, we set the bandwidth between all devices the same. Fig. 10 shows the simulation 
results at difference bandwidth. The inference latency of CIS and CCORAO are similar and 
always smaller than that of other schemes since the problem space is small and they can always 
get the optimal solution. The inference latency of LO still does not vary with bandwidth and 
with the continuous improvement of network bandwidth, the performances of other five 
schemes are also improving. At the beginning, the improvement is quite significant since the 
network condition is the main bottleneck at this time. When the bandwidth is high enough, 
this improvement gets smaller as the computational capacity is the main bottleneck at this time. 
Overall, our proposed scheme CIS has a well performance at different network conditions. 
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Fig. 10. Average weighted inference latency at difference bandwidth. 

 

5.4.2 Performance with different numbers of tasks  
In this section, we evaluate the performance of CIS with different numbers of tasks. We fix 
100 ESs whose computational capacities are randomly taken from [10, 20] FLOPS. Then we 
conduct a series of experiments with different number of EDs, e.g., different number of tasks. 
From each number of EDs, we conduct the experiments for 50 times. For each experiment, the 
computational capacities of the EDs are randomly taken from [1, 5] FLOPS, the DNN model 
deployed on it is randomly picked from AlexNet, MobileNet_V2, ResNet18 and VGG19 and 
the bandwidth between an ED and an ES is randomly taken from [0.1, 2.0] Mbps. We take the 
results of scheme LO as the baseline and compute the relative average weighted inference 
latency for other five schemes, e.g., the average weighted inference latency of other scheme 
divided by that of LO. Then the average of results of the 50 times experiments is taken to 
compare different schemes. Fig. 11 shows the simulation results. There are four main 
observations regarding these results: 
 

 The performance of each scheme decreases as the number of tasks increases. This is 
intuitive since the number and computational capacities of the ESs are fixed.  

 RO is always the worst scheme and can lead to more than 140% average weighted 
inference latency compared to LO. This is because we randomly select the ES to offload 
for each task, which means many tasks may be offloaded to the same ES, thus increasing 
the result. Likely, RA-FS and RA can also have worse performance compared to LO since 
the selection of ESs to offload is random. They are better than RO since they will first 
partition the DNN models, which can reduce the computation overhead of the ESs. 

 The performance gap between CIS and RA-FS or RA increases as the number of tasks 
increases, because the number of tasks offloaded to the same ES is small at the beginning, 
that is, the scheduling strategy of tasks has little impact on the results. The more the tasks, 
the more important it is to decide proper offloading strategy and scheduling strategy. 

 Compared to CCORAO, when the number of tasks is small, the advantage of CIS is not 
obvious since they can both get the optimal solutions. However, as the number of tasks 
increases, CCORAO cannot conduct enough rounds of iteration to get convergence. 
Although CIS also discard some subproblems to limit its complexity, our careful design 
of heuristic rules for discarding subproblems does have an undeniable impact on the 
results. 
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Fig. 11. Relative average weighted inference latency of different numbers of Tasks 

 
 

5.4.3 Performance with different computational capacities patterns 
In this section, we validate the robustness of CIS with different computational capacities 
patterns for the multiple edge servers and devices. We fix the number of EDs and ESs 300 and 
100 respectively. For each DNN model, there are 75 EDs deployed with it. The computational 
capacities of ESs and EDs are randomly taken from [10, 20] FLOPS and [1, 5] FLOPS 
respectively. We conduct the experiments for 100 times and compare the relative average 
weighted inference latency for other five schemes. The results are shown in Fig. 12. Compared 
with RO, RA-FS and RA, the performance our scheme CIS has obvious advantages. Overall, 
the inference latency when taking CIS is always lower. What’s more, the results of CIS are 
less dispersed, which means unacceptable results rarely occur. This is mainly due to the fact 
that the first three strategies randomly select the offloading strategy, which is obviously not 
feasible when the number of tasks is large. When it comes to CCORAO and CIS, both of them 
almost always demonstrates a certain level of performance improvement compared to the 
baseline scheme LO. However, the results of CIS exhibit a more concentrated distribution and 
a lower highest inference latency. This indicates our carefully designed heuristic rules for 
discarding subproblems in Section 4.2.3 do make sense. 
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Fig. 12. Relative average weighted inference latency with different computational capacities patterns 

6. Conclusion 
In this paper, we study the DNN inference acceleration in a heterogeneous edge computing 
scenario. We present a comprehensive analysis of the collaborative inference in the 
heterogeneous scenario and point out the complexity of this problem. A scheme CIS is 
proposed which jointly combines DNN partition, task offloading and task scheduling to 
accelerate the DNN inference tasks. Extensive experiments are conducted to evaluate our 
scheme. With a detailed analysis of evaluation results, CIS are validated to be more effective 
for improving the average weighted inference latency of the system. 
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