• Title/Summary/Keyword: Semiconductor metal oxide

Search Result 720, Processing Time 0.035 seconds

Characteristics of Double Polarity Source-Grounded Gate-Extended Drain NMOS Device for Electro-Static Discharge Protection of High Voltage Operating Microchip (마이크로 칩의 정전기 방지를 위한 DPS-GG-EDNMOS 소자의 특성)

  • Seo, Yong-Jin;Kim, Kil-Ho;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.97-98
    • /
    • 2006
  • High current behaviors of the grounded gate extended drain N-type metal-oxide-semiconductor field effects transistor (GG_EDNMOS) electro-static discharge (ESD) protection devices are analyzed. Simulation based contour analyses reveal that combination of BJT operation and deep electron channeling induced by high electron injection gives rise to the 2-nd on-state. Thus, the deep electron channel formation needs to be prevented in order to realize stable and robust ESD protection performance. Based on our analyses, general methodology to avoid the double snapback and to realize stable ESD protection is to be discussed.

  • PDF

Deposition Characteristics of $TEOS-O_3$ Oxide Film on Substrate (기판 막질에 따른 $TEOS-O_3$ 산화막의 증착 특성)

  • Ahn, Yong-Cheol;Park, In-Seon;Choi, Ji-Hyeon;Chung, U-In;Lee, Jeong-Gyu;Lee, Jeong-Gyu
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.76-82
    • /
    • 1992
  • Deposition of $TEOS-O_3$ oxide film as inter-metal dielectric layer shows the substrate dependency according to the substrate material and pattern density and pitch size. To minimize substrate and Pattern dependency, TEOS-base and $SiH_4-base$ Plasma oxide were predeposited as underlying material on the substrate. The substrate dependency of $TEOS-O_3$ oxide film was more significant on TEOS-base plasma oxide than on $SiH_4-base$ plasma oxide. The dependency of $TEOS-O_3$ oxide film was remarkably reduced, or nearly eliminated, by $N_2$plasma treatment on TEOS-base plasma oxide, which appears to be caused by the O-Si-N structure, observed on the the surface of TEOS-base plasma oxide.

  • PDF

Resistance Switching Mechanism of Metal-Oxide Nano-Particles Memory on Graphene Layer

  • Lee, Dong-Uk;Kim, Dong-Wook;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.318-318
    • /
    • 2012
  • A graphene layer is most important materials in resent year to enhance the electrical properties of semiconductor device due to high mobility, flexibility, strong mechanical resistance and transparency[1,2]. The resistance switching memory with the graphene layer have been reported for next generation nonvolatile memory device[3,4]. Also, the graphene layer is able to improve the electrical properties of memory device because of the high mobility and current density. In this study, the resistance switching memory device with metal-oxide nano-particles embedded in polyimide layer on the graphene mono-layer were fabricated. At first, the graphene layer was deposited $SiO_2$/Si substrate by using chemical vapor deposition. Then, a biphenyl-tetracarboxylic dianhydride-phenylene diamine poly-amic-acid was spin coated on the deposited metal layer on the graphene mono-layer. Then the samples were cured at $400^{\circ}C$ for 1 hour in $N_2$ atmosphere after drying at $135^{\circ}C$ for 30 min through rapid thermal annealing. The deposition of aluminum layer with thickness of 200 nm was done by a thermal evaporator. The electrical properties of device were measured at room temperature using an HP4156a precision semiconductor parameter analyzer and an Agilent 81101A pulse generator. We will discuss the switching mechanism of memory device with metal-oxide nano-particles on the graphene mono-layer.

  • PDF

Thermal Treated Al-doped Zinc Oxide (AZO) Film-embedding UV Sensors

  • Kim, Jun-Dong;Yun, Ju-Hyeong;Ji, Sang-Won;Park, Yun-Chang;Anderson, Wayne A.;Han, Seok-Gyu;Kim, Yeong-Guk;Kim, Jae-Hyeon;Anderson, Wayne A.;Lee, Jeong-Ho;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.90-90
    • /
    • 2011
  • Transparent conducting oxide (TCO) films have been intensively utilized in the electric applications, such as, displays, lightings and solar cells due to the good electric conductivity with an excellent transmittance of the visible light. We, herein present an excellent Al-doped ZnO film (AZO), which has been fabricated by co-sputtering method. An as-deposited AZO film had an optical transmittance of 84.78% at 550 nm and a resistivity of $7.8{\times}10^{-3}{\Omega}cm$. A rapid annealing process significantly improved the optical transmittance and electrical resistivity of the AZO film to 99.67% and $1{\times}10^{-3}{\Omega}cm$, respectively. The fabricated AZO film was fabricated for a metal-semiconductor-metal (MSM) structure. The AZO film-embedding MSM device was highly responsive to a UV light.

  • PDF

Morphological and Electrical Characteristics of nc-ZnO/ZnO Thin Films Fabricated by Spray-pyrolysis for Field-effect Transistor Application (전계효과트랜지스터 기반 반도체 소자 응용을 위한 스프레이 공정을 이용한 nc-ZnO/ZnO 박막 제작 및 특성 분석)

  • Cho, Junhee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.4
    • /
    • pp.1-5
    • /
    • 2021
  • Field-effect transistors based on solution-processed metal oxide semiconductors has attracted huge attention due to their intrinsic characteristics of optical and electrical characteristics with benefits of simple and low-cost process. Especially, spray-pyrolysis has shown excellent device performance which compatible to vacuum-processed Field-effect transistors. However, the high annealing temperature for crystallization of MOS and narrow range of precursors has impeded the progress of the technology. Here, we demonstrated the nc-ZnO/ZnO films performed by spray-pyrolysis with incorporating ZnO nanoparticles into typical ZnO precursor. The films exhibit preserving morphological properties of poly-crystalline ZnO and enhanced electrical characteristics with potential for low-temperature processability. The influence of nanoparticles within the film was also researched for realizing ZnO films providing good quality of performance.

Two dimensional tin sulfide for photoelectric device

  • Patel, Malkeshkumar;Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.389.1-389.1
    • /
    • 2016
  • The flexible solid state device has been widely studied as portable and wearable device applications such as display, sensor and curved circuits. A zero-bias operation without any external power consumption is a highly-demanding feature of semiconductor devices, including optical communication, environment monitoring and digital imaging applications. Moreover, the flexibility of device would give the degree of freedom of transparent electronics. Functional and transparent abrupt p/n junction device has been realized by combining of p-type NiO and n-type ZnO metal oxide semiconductors. The use of a plastic polyethylene terephthalate (PET) film substrate spontaneously allows the flexible feature of the devices. The functional design of p-NiO/n-ZnO metal oxide device provides a high rectifying ratio of 189 to ensure the quality junction quality. This all transparent metal oxide device can be operated without external power supply. The flexible p-NiO/n-ZnO device exhibit substantial photodetection performances of quick response time of $68{\mu}s$. We may suggest an efficient design scheme of flexible and functional metal oxide-based transparent electronics.

  • PDF

Synthesis of Metal Oxide Semiconductor Nanostructures and Their Gas Sensing Properties (금속 산화물 반도체 나노구조의 합성과 가스 감응 특성)

  • Choi, Kwon-Il;Lee, Jong-Heun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.8
    • /
    • pp.632-638
    • /
    • 2012
  • The prepartion of various metal oxide nanostructures via hydrothermal method, hydrolysis, thermal evaporation and electrospinning and their applications to chemoresistive sensors have been investigated. Hierarchical and hollow nanostructures prepared by hydrothermal method and hydrolysis showed the high response and fast responding kinetics on account of their high gas accessibility. Thermal evaporation and electrospinning provide the facile routes to prepare catalyst-loaded oxide nanowires and nanofibers, respectively. The loading of noble metal and metal oxide catalyst were effective to achieve rapid response/recovery and selective gas detection.

Transient trap density in thin silicon oxides

  • Kang, C.S.;Kim, D.J.;Byun, M.G.;Kim, Y.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.6
    • /
    • pp.412-417
    • /
    • 2000
  • High electric field stressed trap distributions were investigated in the thin silicon oxide of polycrystalline silicon gate metal oxide semiconductor capacitors. The transient currents associated with the off time of stressed voltage were used to measure the density and distribution of high voltage stress induced traps. The transient currents were due to the discharging of traps generated by high stress voltage in the silicon oxides. The trap distributions were relatively uniform near both cathode and anode interface in polycrystalline silicon gate metal oxide semiconductor devices. The stress generated trap distributions were relatively uniform the order of $10^{11}$~$10^{12}$ [states/eV/$\textrm{cm}^2$] after a stress. The trap densities at the oxide silicon interface after high stress voltages were in the $10^{10}$~$10^{13}$ [states/eV/$\textrm{cm}^2$]. It was appeared that the transient current that flowed when the stress voltages were applied to the oxide was caused by carriers tunneling through the silicon oxide by the high voltage stress generated traps.

  • PDF

Functional Designs of Metal oxide for Transparent Electronics

  • Kim, Joondong;Patel, Malkeshkumar;Kim, Hong-Sik;Kim, Hyunki;Yadav, Pankaj;Park, Wanghee;Ban, Dongkyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.387.1-387.1
    • /
    • 2016
  • Transparent materials are necessary for most photoelectric devices, which allow the light generation from electric energy or vice versa. Metal oxides are usual materials for transparent conductors to have high optical transmittance with good electrical properties. Functional designs may apply in various applications, including solar cells, photodetectors, and transparent heaters. Nanoscale structures are effective to drive the incident light into light-absorbing semiconductor layer to improve solar cell performances. Recently, the new metal oxide materials have inaugurated functional device applications. Nickel oxide (NiO) is the strong p-type metal oxide and has been applied for all transparent metal oxide photodetector by combining with n-type ZnO. The abrupt p-NiO/n-ZnO heterojunction device has a high transmittance of 90% for visible light but absorbs almost entire UV wavelength light to show the record fastest photoresponse time of 24 ms. For other applications, NiO has been applied for solar cells and transparent heaters to induce the enhanced performances due to its optical and electrical benefits. We discuss the high possibility of metal oxides for current and future transparent electronic applications.

  • PDF