Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.8.632

Synthesis of Metal Oxide Semiconductor Nanostructures and Their Gas Sensing Properties  

Choi, Kwon-Il (Department of Materials Science and Engineering, Korea University)
Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.8, 2012 , pp. 632-638 More about this Journal
Abstract
The prepartion of various metal oxide nanostructures via hydrothermal method, hydrolysis, thermal evaporation and electrospinning and their applications to chemoresistive sensors have been investigated. Hierarchical and hollow nanostructures prepared by hydrothermal method and hydrolysis showed the high response and fast responding kinetics on account of their high gas accessibility. Thermal evaporation and electrospinning provide the facile routes to prepare catalyst-loaded oxide nanowires and nanofibers, respectively. The loading of noble metal and metal oxide catalyst were effective to achieve rapid response/recovery and selective gas detection.
Keywords
Hydrothermal methode; Hydrolysis; Thermal evaporation; Electrospinning; Nanostructure; Catalyst;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, Chem. Commun., 47, 5148 (2011).   DOI
2 I. S. Hwang, J. K. Choi, S. J. Kim, K. Y. Dong, J. H. Kwon, B. K. Ju, and J. H. Lee, Sensor. Actuat., B142, 105 (2009).
3 J. K. Srivastava, P. Pandey, V. N. Mishra, and R. Dwivedi, Solid State Sciences, 11, 1602 (2009).   DOI
4 S. J. Kim, I. S. Hwang, C. W. Na, I. D. Kim, Y. C. Kang, and J. H. Lee, J. Mater. Chem., 21, 18477 (2011).   DOI
5 Z. Bai, C. Xie, M. Hu, and S. Zhang, Physica. E, 41, 235 (2008).   DOI
6 V. V. Sysoev, T. Schneider, J. Goschnick, I. Kiselev, W. Habicht, H. Hahn, E. Strelcov, and A. Kolmakov, Sensor. Actuat., B139, 699 (2009).
7 H. R. Kim, K. I. Choi, J. H. Lee, and S. A. Akbar, Sensor. Actuat., B136, 138 (2009).
8 C. S. Moon, H. R. Kim, G. Auchterlonie, J. Drennan, and J. H. Lee, Sensor. Actuat., B131, 556 (2008).
9 C. Wang, C. Xiangfeng, and W. Mingmei, Sensor. Actuat., B120, 508 (2007).
10 H. R. Kim, K. I. Choi, K. M. Kim, I. D. Kim, G. Cao, and J. H. Lee, Chem. Commun., 46, 5061 (2010).   DOI
11 J. Qiu, M. Guo, Y. Feng, and X. Wang, Electrochim. Acta, 56, 5776 (2011).   DOI
12 M. Shi, X. Pan, W. Qiu, D. Zheng, M. Xu, and H. Chen, Inter. J. Hydrogen Energy, 36, 15153 (2011).   DOI
13 N. G. Cho, D. J. Yang, M. J. Jin, H. G Kim, H. L. Tuller, and I. D Kim, Sens. Actuators B, 160, 1468 (2011).   DOI
14 J. Moon, J. A. Park, S. J. Lee, T. Zyung, and I. D. Kim, Sensor. Actuat., B149, 301 (2010).
15 G. Neri, A. Bonavita, G. Micali, N. Donato, F. A. Deorsola, P. Mossino, I. Amato, and B. D. Benedetti, Sensor. Actuat., B117, 196 (2006).
16 Z. Zhu, R. C. Deka, A. Chutia, R. Sahnoun, H. Tsuboi, M. Koyama, N. Hatakeyama, A. Endou, H. Takaba, C. A. D. Carpio, M. Kubo, and A. Miyamoto, J. Phy. Chem. Solids, 70, 1248 (2009).   DOI
17 H. J. Kim, K. I. Choi, A. Pan, I. D. Kim, H. R. Kim, K. M. Kim, C. W. Na, G. Cao, and J. H. Lee, J. Mater. Chem., 21, 6549 (2011).   DOI