• Title/Summary/Keyword: Semiconductor Cleaning

Search Result 157, Processing Time 0.023 seconds

A Study on the Removal of LPP CMP Induced Defect (LPP(Landing Plug Poly) CMP Induced Defect 제거에 관한 연구)

  • Oh, Pyeong-Won;Choi, Jea-Gon;Choi, Yong-Soo;Choi, Geun-Min;Song, Yong-Wook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.235-238
    • /
    • 2004
  • 본 연구는 반도체소자 제조공정에 적용되는 CMP공정 중 LPP(Landing Plug Poly) Contact간의 소자 분리를 위해 진행되는 LPP CMP의 후 세정 과정에서 유발되는 방사형 Defect 제거에 관한 내용이다. 방사형 Defect은 LPP CMP 후에 노출되는 BPSG, Poly, Nitride Film과 연마재로 사용되는SiO2 입자, 후 세정과정에서 적용되는 SC-1, DHF, $NH_4OH$ Chemical과 Brush와의 상호작용에 의해 발생되며, Cleaning시의 산성 분위기 하에서 각 물질간의 pH와 Zeta Potential의 차이에서 기인한다. 이 Defect을 제거하기 위해 LPP CMP후에 Film 표면에 노출되는 각 물질의 표면 특성과 CMP 후 오염입자의 흡착과 재 흡착에 영향을 미치는 Electrostatic force와 Van der Waals force, PVA Brush에 의한 Mechanical force의 상호작용을 고려하여 최적 후 세정 조건을 제시 하였다.

  • PDF

반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발

  • Nam, Gyeong-Tak;Kim, Ho-Jung;Kim, Yeong-Gil;Kim, Tae-Seong
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.128-131
    • /
    • 2007
  • As the minimum feature size decrease, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT. Charged monodisperse particles are generated using scanning mobility particle sizer (SMPS) and deposited on the wafer by electrostatic force. The experimental results agreed with the simulation results well. We calculate the particles loss in pipe flow theoretically and compare with the experimental results.

  • PDF

Simulation of Ultrasonic Dry Cleaning for Semiconductor/display Device Application (반도체/디스플레이 소자용 초음파 건식세정 시뮬레이션 연구)

  • Yun, Eui-Jung;Lee, Gang-won;Kim, Chol-Ho;Lee, Seok-Tae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1259-1263
    • /
    • 2004
  • In this paper, the optimum design of ultrasonic dry cleaning head was investigated. The transducer instead of mechanical dynamic structure was used to generate ultrasonic wave and the horn-shape amplifier was utilized to solve the energy decaying problem of ultrasonic wave with propagating it through the media. The analyses of ultrasonic wave and a fluid for the selected structure of a cleaning head were carried out using SYSNOISE and ANSYS simulators, respectively. Based on simulator results, the distance between a horn and the substrate of 4 mm and the horn diameter of 10 mm were determined to maximize the energy of ultrasonic waves. The cooling structure was also considered to reduce the heat from the transducer and the horn. The equivalent circuit for the fabricated horn was deduced from HP4194A impedance/gain/phase analyzer and the frequency of an ultrasonic wave of 20.25 kHz was confirmed using the parameters of the equivalent circuit.

A Study on the Characteristics of the High Concentration Ozone Generator for the Semiconductor Wafer Cleaning with the Ozone Dissolved De-ionized Water (반도체 웨이퍼의 오존 수(水) 세정을 위한 고농도 오존발생장치 특성 연구)

  • 손영수;함상용;문세호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.579-585
    • /
    • 2003
  • Recently the utilization of the ozone dissolved de-ionized water(DI-O3 water) in semiconductor wet cleaning process to replace the conventional RCA methods has been studied. In this paper, we propose the water-electrode type ozone generator which has the ozone gas characteristics of the high concentration and high purity to produce the high concentration DI-O3 water for the silicon wafer surface cleaning process. The ozone generator has the dual dielectric tube structure of silent discharge type and the water is both used to electrode and cooling water. We investigate the performance of the proposed ozone generator which has the design goal of the concentration of 7[wt%] and ozone generation quantity of 6[g/hr] at flow rate of 1[$\ell$/min). The experiment results show that the water electrode type ozone generator has the characteristics of 8.48[wt%] of concentration, 8.08[g/hr] of generation quantity and 76.2[g/kWh] of yield and it's possible to use the proposed ozone generator for the DI-O3 water cleaning process of silicon wafer surface.

Dry Cleaning of Si Contact Hole using$UV/O_3$ Method ($UV/O_3$을 이용한 Si contact hole 건식세정에 관한 연구)

  • 최진식;고용득;구경완;김성일;천희곤
    • Electrical & Electronic Materials
    • /
    • v.10 no.1
    • /
    • pp.8-14
    • /
    • 1997
  • The UV/O$_{3}$ dry cleaning has been well known in removing organic molecules. The UV/O$_{3}$ dry cleaning method was performed to clean the Si wafer surfaces and contact holes contaminated by organic molecules such as residual PR. During the cleaning process, the Si surfaces were analyzed with X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM) and ellipsometer. When the UV/O$_{3}$ dry cleaning at 200'C was performed for 3 minutes, the residual photoresist was almost removed on Si wafer surfaces, but Si surfaces were oxidized. For UV/O$_{3}$ application of contact hole cleaning, the contact string were formed using the equipment of ISRC (Inter-university Semiconductor Research Center). Before Al deposition, UV/O$_{3}$ (at 200.deg. C) dry cleaning was performed for 3 minutes. After metal annealing, the specific contact resistivity was measured. Because UV/O$_{3}$ dry cleaning removed organic contaminants in contact holes, the specific contact resistivity decreased. Each contact hole size was different, but the specific contact resistivities were all much the same. Thus, it is expected that the UV/O$_{3}$ dry cleaning method will be useful method of removal of the organic contaminants at smaller contact hole cleaning.

  • PDF

A Study of Minute Particles' Adhesion on a Rough Surface for a Cryogenic $CO_2$ Cleaning Process (극저온 $CO_2$ 세정공정을 위한 거친표면 위 미세입자의 점착특성 연구)

  • Seok, Jong-Won;Lee, Seong-Hoon;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.1
    • /
    • pp.5-10
    • /
    • 2010
  • Among a variety of cleaning processes, the cryogenic carbon dioxide ($CO_2$) cleaning has merits because it is highly efficient in removing very fine particles, innoxious to humans and does not produce residuals after the cleaning, which enables us to extend its area of coverage in the semi-conductor fabrication society. However, the cryogenic carbon dioxide cleaning method has some technical research issues in aspect to particles' adhesion and removal. To resolve these issues, performing an analysis for the identification of particle adhesion mechanism is needed. In this study, a research was performed by a theoretical approach. To this end, we extended the G-T (Greenwood-Tripp) model by applying the JKR (Johnson-Kendall-Roberts) and Lennard-Jones potential theories and the statistical characteristics of rough surface to investigate and identify the contact, adhesion and deformation mechanisms of soft or hard particles on the rough substrate. The statistical characteristics of the rough surface were taken into account through the employment of the normal probability distribution function of the asperity peaks on the substrate surface. The effects of surface roughness on the pull-off force for these particles were examined and discussed.

Comparison of particle removal efficiency between the physical cleaning methods in the fabrication of liquid crystal displays (LCD 제조공정에서 물리적 세정법의 미립자 제거효율 비교 연구)

  • Park, Chang-Beom;Yi, Seung-Jun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.795-801
    • /
    • 2010
  • As the fabrication technology of LCDs (Liquid Crystal Displays) advances, the size of mother glass substrates is getting larger, and the fabrication process is becoming finer. Accordingly, the importance of cleaning processes grows in the fabrication process of LCDs. In this study, we have compared and evaluated the particle removal efficiency for three different methods of physical cleaning, which are brush, bubble jet, and aqua/air cleaning. Using the seventh generation glass substrate, the particle removal efficiency has been investigated by changing operation conditions such as a flow rate of deionized water, pressure, contact depth between a brush bristle and a glass substrate, and so forth. In the case of brush cleaning, the cleaning efficiency barely changes after a critical point when the contact depth is varied. While the cleaning efficiency of bubble jet cleaning is almost independent of pressure, that of aqua/air cleaning is affected by pressure up to a critical point, but is not changed after it. We note the brush cleaning is the most effective among the three cleaning methods under our experimental conditions.

PECVD Chamber Cleaning End Point Detection (EPD) Using Optical Emission Spectroscopy Data

  • Lee, Ho Jae;Seo, Dongsun;Hong, Sang Jeen;May, Gary S.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.5
    • /
    • pp.254-257
    • /
    • 2013
  • In-situ optical emission spectroscopy (OES) is employed for PECVD chamber monitoring. OES is used as an addon sensor to monitoring and cleaning end point detection (EPD). On monitoring plasma chemistry using OES, the process gas and by-product gas are simultaneously monitored. Principal component analysis (PCA) enhances the capability of end point detection using OES data. Through chamber cleaning monitoring using OES, cleaning time is reduced by 53%, in general. Therefore, the gas usage of fluorine is also reduced, so satisfying Green Fab challenge in semiconductor manufacturing.

Study on Implant Cleaning Effect of Lasers of Different Wavelengths (파장이 다른 레이저의 임플란트 세정 효과에 관한 연구)

  • Park, Eun Kyeong;Yang, Yun Seok;Lee, Ka Ram;Yoo, Young Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.643-651
    • /
    • 2013
  • This study applied a laser cleaning method (dry cleaning) that is used for cleaning semiconductor elements to dental implant cleaning. The lasers used in this study were pulsed fiber lasers with wavelengths of 1,064 and 532 nm. The peak output, energy per pulse, energy density per pulse, time of pulse experiment, and number of pulse experiments served as process variables for this study, and the variables were changed for each experiment. As a result, a laser with a wavelength of 532 nm showed much higher cleaning efficiency than its 1,064 nm counterpart. As the wavelength range decreased, the quantized energy increased and the reflection rate of the titanium used for the implant decreased; consequently, the energy absorption rate increased. Therefore, it is proposed that the energy density by wavelength has a greater influence on cleaning than does the output size.