• Title/Summary/Keyword: Semi-symmetric connection

Search Result 67, Processing Time 0.018 seconds

ON THE ALGEBRA OF 3-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.207-216
    • /
    • 2014
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to study the algebraic geometric structures of 3-dimensional $^*g-ESX_3$. Particularly, in 3-dimensional $^*g-ESX_3$, we derive a new set of powerful recurrence relations in the first class.

A STUDY ON THE RECURRENCE RELATIONS OF 5-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.24 no.3
    • /
    • pp.319-330
    • /
    • 2016
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unied eld tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to study the algebraic geometric structures of 5-dimensional $^*g-ESX_5$. Particularly, in 5-dimensional $^*g-ESX_5$, we derive a new set of powerful recurrence relations in the first class.

A STUDY ON THE RECURRENCE RELATIONS AND VECTORS Xλ, Sλ AND Uλ IN g - ESXn

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.18 no.2
    • /
    • pp.133-139
    • /
    • 2010
  • The manifold $g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $g_{{\lambda}{\mu}}$ through the ES-connection which is both Einstein and semi-symmetric. In this paper, we investigate the properties of the vectors $X_{\lambda}$, $S_{\lambda}$ and $U_{\lambda}$ of $g-ESX_n$, with main emphasis on the derivation of several useful generalized identities involving it.

GEOMETRIC INEQUALITIES FOR WARPED PRODUCTS SUBMANIFOLDS IN GENERALIZED COMPLEX SPACE FORMS

  • Mohd Aquib;Mohd Aslam;Michel Nguiffo Boyom;Mohammad Hasan Shahid
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.179-193
    • /
    • 2023
  • In this article, we derived Chen's inequality for warped product bi-slant submanifolds in generalized complex space forms using semisymmetric metric connections and discuss the equality case of the inequality. Further, we discuss non-existence of such minimal immersion. We also provide various applications of the obtained inequalities.

THE CURVATURE TENSORS IN THE EINSTEIN'S $^*g$-UNIFIED FIELD THEORY II. THE CONTRACTED SE-CURVATURE TENSORS OF $^*g-SEX_n$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.641-652
    • /
    • 1998
  • Chung and et al. ([2].1991) introduced a new concept of a manifold, denoted by $^{\ast}g-SEX_n$, in Einstein's n-dimensional $^{\ast}g$-unified field theory. The manifold $^{\ast}g-SEX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^{\ast}g^{\lambda \nu}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor $^{\ast}g^{\lambda \nu}$. Recently, Chung and et al.([3],1998) obtained a concise tensorial representation of SE-curvature tensor defined by the SE-connection of $^{\ast}g-SEX_n$ and proved deveral identities involving it. This paper is a direct continuations of [3]. In this paper we derive surveyable tensorial representations of constracted curvature tensors of $^{\ast}g-SEX_n$ and prove several generalized identities involving them. In particular, the first variation of the generalized Bianchi's identity in $^{\ast}g-SEX_n$, proved in theorem (2.10a), has a great deal of useful physical applications.

  • PDF

Fuzzy analysis for stability of steel frame with fixity factor modeled as triangular fuzzy number

  • Tran, Thanh Viet;Vu, Quoc Anh;Le, Xuan Huynh
    • Advances in Computational Design
    • /
    • v.2 no.1
    • /
    • pp.29-42
    • /
    • 2017
  • This study presents algorithms for determining the fuzzy critical loads of planar steel frame structures with fixity factors of beam - column and column - base connections are modeled as triangular fuzzy numbers. The finite element method with linear elastic semi-rigid connection and Response Surface Method (RSM) in mathematical statistic are applied for problems with symmetric triangular fuzzy numbers. The ${\alpha}$ - level optimization using the Differential Evolution (DE) involving integrated finite element modeling is proposed to apply for problems with any triangular fuzzy numbers. The advantage of the proposed methodologies is demonstrated through some example problems relating to for the twenty - story, four - bay planar steel frames.

THE CURVATURE TENSORS IN THE EINSTEIN′S *g- UNIFIED FIELD THEORY I. THE SE-CURVATURE TENSOR OF *g-SE $X_{n}$

  • Chung, Kyung-Tae;Chung, Phil-Ung;Hwang, In-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1045-1060
    • /
    • 1998
  • Recently, Chung and et al. ([11], 1991c) introduced a new concept of a manifold, denoted by *g-SE $X_{n}$ , in Einstein's n-dimensional *g-unified field theory. The manifold *g-SE $X_{n}$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor * $g^{λν}$ through the SE-connection which is both Einstein and semi-symmetric. In this paper, they proved a necessary and sufficient condition for the unique existence of SE-connection and presented a beautiful and surveyable tensorial representation of the SE-connection in terms of the tensor * $g^{λν}$. This paper is the first part of the following series of two papers: I. The SE-curvature tensor of *g-SE $X_{n}$ II. The contracted SE-curvature tensors of *g-SE $X_{n}$ In the present paper we investigate the properties of SE-curvature tensor of *g-SE $X_{n}$ , with main emphasis on the derivation of several useful generalized identities involving it. In our subsequent paper, we are concerned with contracted curvature tensors of *g-SE $X_{n}$ and several generalized identities involving them. In particular, we prove the first variation of the generalized Bianchi's identity in *g-SE $X_{n}$ , which has a great deal of useful physical applications.tions.

  • PDF