• Title/Summary/Keyword: Semi-conductor

Search Result 239, Processing Time 0.023 seconds

THE RECENT TREND OF BUILD-UP PRINTED CIRCUIT BOARD TECHNOLOGIES

  • Takagi, Kiyoshi
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.289-296
    • /
    • 1999
  • The integration of the LSI has been greatly improved and the circuit patters on the LSI are becoming finer line and pitch. The high-density electronic packaging technology is improved. In order to realize the high-density packaging technology, the density of the circuit wiring of the printed circuit boards have also been more dense. The build-up process multilayer printed circuit board technology have a lot of vias, possibilities of the finer conductor wirings and have a freedom of capabilities of wiring design. The build-up process printed circuit boards have the wiring rules which are the pattern width: $100-20\mu\textrm{m}$, the via hole diameter: $100-50\mu\textrm{m}$. There three kinds of build-up processes as far materials and hole drilling. In this paper, the recent technology trends of the build-up printed circuit board technologies are described.

  • PDF

Frequency Modulation Method of ZVT Interleaved DC/DC Converter Using Auxiliary Coupled-Inductor (보조 커플드-인덕터를 이용한 ZVT 인터리브드 DC/DC 컨버터의 주파수 변조 기법)

  • Lee, Jong-Young;Lee, Soon-Ryung;Lee, Kang-Hyun;Won, Chung-Yuen;Yi, Je-Hyun;Cho, Bo-Hyung
    • Proceedings of the KIPE Conference
    • /
    • 2016.11a
    • /
    • pp.1-2
    • /
    • 2016
  • This paper presents frequency modulation method of zero-voltage-transition interleaved DC/DC converter using auxiliary coupled-inductor. In conventional ZVT interlaved converter without semi-conductor devices in auxiliary circuit, the peak-to-peak value of coupled-inductor current has fixed value despite the change of load current. Then, as the load is reduced, the efficiency is reduced because of the conduction loss. The proposed frequency modulation method can reduce the conduction loss by controlling the current of coupled-inductor as the load condition using frequency modulation. The proposed method is verified by experimental results.

  • PDF

실험적 방법을 이용한 TFT-LCD 정밀 검사 장비의 진동 허용 규제치 평가 및 진동 저감 대책

  • Lee Hong-Gi;Park Sang-Gon;Jeon Jong-Gyun;Son Seong-Wan
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.09a
    • /
    • pp.49-54
    • /
    • 2005
  • In the case of a sensitive equipment, it require a vibration free environment to provide its proper function. Especially, lithography and inspection device, which have sub-nanometer class high accuracy and resolution, have come to necessity for producing more improved Giga Class semi conductor wafers. The aim of this study is to evaluate the allowable vibration response of a precision inspect ion equipment, which has some trouble in field, by using experimental measurement data and to proposal a proper ant i-vibration method.

  • PDF

Evaluation of the Machining Method on the Formation of Surface Quality of Upper Electrode for Semiconductor Plasma Etch Process (반도체 플라즈마 에칭 상부 전극의 표면 품질 형성에 관한 가공법 평가)

  • Lee, Eun Young;Kim, Moon Ki
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • This study has been focused on properties of surface technology for large diameter upper electrode using in high density plasma process as like semi-conductor manufacturing process. The experimental studies have been carried out to get mirror surface for upper electrode. For a formation of high surface quality upper electrode, single crystal silicon upper electrode has been mechanical and chemical machining worked. Mechanical machining work of the upper electrode is carried out with varying mesh type using diamond wheel. In case of chemical machining work, upper electrode surface roughness was observed to be strongly dependent upon the etchant. The different surface roughness characteristics were observed according to etchant. The machining result of the surface roughness and surface morphology have been analyzed by use of surface roughness tester, laser microscope and ICP-MS.

Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery

  • Chaniago, Yus Donald;Lee, Moonyong
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.255-265
    • /
    • 2018
  • The huge amount of solvents used in the semi-conductor and display industry typically result in waste of valuable solvents which often form complex azeotropic mixtures. This study explored a recovery process of a quaternary waste solvent, comprising methyl 2-hydroxybutyrate, propylene glycol monomethyl ether acetate, ethyl lactate, and ethyl-3-ethoxy propionate. In this study, a novel shortcut column method with a graphical approach was exploited for the distillation column design of complex quaternary azeotropic mixtures. As a result, the proposed shortcut method and design procedure solved the complex separation paths successfully with less computational efforts while achieving all requirements for component purity.

Implementation of Massive FDTD Simulation Computing Model Based on MPI Cluster for Semi-conductor Process (반도체 검증을 위한 MPI 기반 클러스터에서의 대용량 FDTD 시뮬레이션 연산환경 구축)

  • Lee, Seung-Il;Kim, Yeon-Il;Lee, Sang-Gil;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.9
    • /
    • pp.21-28
    • /
    • 2015
  • In the semi-conductor process, a simulation process is performed to detect defects by analyzing the behavior of the impurity through the physical quantity calculation of the inner element. In order to perform the simulation, Finite-Difference Time-Domain(FDTD) algorithm is used. The improvement of semiconductor which is composed of nanoscale elements, the size of simulation is getting bigger. Problems that a processor such as CPU or GPU cannot perform the simulation due to the massive size of matrix or a computer consist of multiple processors cannot handle a massive FDTD may come up. For those problems, studies are performed with parallel/distributed computing. However, in the past, only single type of processor was used. In GPU's case, it performs fast, but at the same time, it has limited memory. On the other hand, in CPU, it performs slower than that of GPU. To solve the problem, we implemented a computing model that can handle any FDTD simulation regardless of size on the cluster which consist of heterogeneous processors. We tested the simulation on processors using MPI libraries which is based on 'point to point' communication and verified that it operates correctly regardless of the number of node and type. Also, we analyzed the performance by measuring the total execution time and specific time for the simulation on each test.

Electrochemical Synthesis of Red Fluorescent Silicon Nanoparticles

  • Choi, Jonghoon;Kim, Kyobum;Han, Hyung-Seop;Hwang, Mintai P.;Lee, Kwan Hyi
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.35-38
    • /
    • 2014
  • Herein, we report on the preparation of red fluorescent Si nanoparticles stabilized with styrene. Nano-sized Si particles emit fluorescence under UV excitation, which could be used to open up new applications in the fields of optics and semi-conductor research. Unfortunately, conventional methods for the preparation of red fluorescent Si nanoparticles suffer from the lack of a fully-established standard synthesis protocol. A common initial approach during the preparation of semi-conductors is the etching of crystalline Si wafers in a HF/ethanol/$H_2O$ bath, which provides a uniformly-etched surface of nanopores amenable for further nano-sized modifications via tuning of various parameters. Subsequent sonication of the etched surface crumbles the pores on the wafer, resulting in the dispersion of particles into the solution. In this study, we use styrene to occupy these platforms to stabilize the surface. We determine that the liberated silicon particles in ethanol solution interact with styrene, resulting in the substitution of Si-H bonds with those of Si-C as determined via UV photo-catalysis. The synthesized styrene-coated Si nanoparticles exhibit a stable, bright, red fluorescence under excitation with a 365 nm UV light, and yield approximately 100 mg per wafer with a synthesis time of 2 h. We believe this protocol could be further expanded as a cost-effective and high-throughput standard method in the preparation of red fluorescent Si nanoparticles.

A Study on Electrical Accident of Distributing Cable Termination with Simulated Badness Construction (평가시공불량을 모의한 배전급 케이블 종단부의 전기적 사고 연구)

  • Choi, Jae-Hyeong;Choi, Jin-Wook;Kim, Sang-Hyun;Kim, Young-Seok;Kim, Sun-Gu;Baek, Seung-Myeong
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.465-470
    • /
    • 2008
  • This paper introduces experimental investigates of an electrical accident of the distributing cable termination with simulated badness construction. We prepared two termination kites, one is built-up type, the other is heat contraction type. Also, we manufactured cable termination that have simulated defect by badness construction and measured their insulation characteristics such as ac (35kV, 1min) and impulse (95kV, $1.2{\times}50{\mu}s$) withstand test. The influence of defects such as thickness and the gap between stress-con of housing and semi-conductor on insulating properties of the termination have been studied. The thickness decrease of insulator decreases ac breakdown strength. Dielectric breakdown traces of insulator that is damaged by knife displayed other shape. The gap of between housing and semiconductor deteriorates dielectric strength of insulator seriously.

  • PDF

New Graphene Electronic Device Structure for High Ion/Ioff Ratio

  • Jeong, Hyeon-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.112-112
    • /
    • 2012
  • Graphene has been considered as one of the potential post Si-materials due to its high mobility. [1] However, since graphene is semi-conductor with zero band gap, it is difficult to achieve high Ion/Ioff ratio, one of the most important requirements for commercial devices. There have been many attempts to open its band gap for high Ion/Ioff ratio, but most of them end up lowering the mobility. [2-5] Thus, we proposed and demonstrated a new device structure for graphene transistor based on one of the unique properties of graphene for high Ion/Ioff: using this approach, we were able to achieve the ratio over $10^5$. [6] Our device has several major advantages over previously proposed graphene based electronic devices. Since our device does not alter the given properties of graphene, such as opening the band gap, it has no fundamental issues on mobility degradations. In addition, our device is fully compatible with current Si technology and we were able to fabricate the devices with 6 inch wafer scale with CVD (Chemical Vapor Deposition) grown graphene. In this presentation, we will discuss about the details of our graphene device including the device structure and the detailed understanding of working mechanism. We will present device characteristics including I-V curves with $10^5$ on/off ratio. We will also present the performance of an inverter based on our devices. Finally, we will discuss the current issues and their potential solutions.

  • PDF

Analysis on Monopole Antenna for Moisture Determination in Oil Palm Fruit Using Finite Difference Method

  • Cheng, E.M.;Abbas, Z.;Rahim @ Samsuddin, H.A.;Lee, K.Y.;You, K.Y.;Hassan, J.;Zainuddin, H.;Khor, S.F.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1754-1762
    • /
    • 2016
  • Finite difference analysis were applied to study the principle operation of monopole antenna for moisture determination in oil palm fruit at 2 GHz. The electromagnetic field interact with oil palm fruit on the interface between the antenna and oil palm fruit and cause a reflection. The reflection measurement is based on mismatch impedance or dielectric properties between two media. Reflection coefficient is used to quantify the level of reflection. The monopole antenna was made of RG405/U semi-rigid coaxial cable with an inner and outer diameter of 0.45 mm and 1.50 mm, respectively with 2.23 mm length of protruding conductor over 5.66 cm length of monopole antenna. This monopole antenna for moisture detection was compared with induced EMF method in terms of reflection coefficient at 2 GHz. The results show that the complex reflection coefficient measured using monopole antenna provides significant results to predict moisture content in oil palm fruit.