DOI QR코드

DOI QR Code

Distillation design and optimization of quaternary azeotropic mixtures for waste solvent recovery

  • Chaniago, Yus Donald (School of Chemical Engineering, College of Engineering, Yeungnam University) ;
  • Lee, Moonyong (School of Chemical Engineering, College of Engineering, Yeungnam University)
  • Received : 2018.03.04
  • Accepted : 2018.06.27
  • Published : 2018.11.25

Abstract

The huge amount of solvents used in the semi-conductor and display industry typically result in waste of valuable solvents which often form complex azeotropic mixtures. This study explored a recovery process of a quaternary waste solvent, comprising methyl 2-hydroxybutyrate, propylene glycol monomethyl ether acetate, ethyl lactate, and ethyl-3-ethoxy propionate. In this study, a novel shortcut column method with a graphical approach was exploited for the distillation column design of complex quaternary azeotropic mixtures. As a result, the proposed shortcut method and design procedure solved the complex separation paths successfully with less computational efforts while achieving all requirements for component purity.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Y.D. Chaniago, L.Q. Minh, M.S. Khan, K.K. Koo, A. Bahadoric, M.Y. Lee, Energy Convers Manag 102 (2015) 92. https://doi.org/10.1016/j.enconman.2015.03.086
  2. S.M. Chon, B.S. Lee, S.I. Kim, J.I. Gil, P.K. Jun, M.S. Jun, US Patent 5866305 (1999).
  3. K.M. Kim, J.H. Kim, Y.Y. Youn, Y.K. Wang, US Patent US 2005/0277056 A1 (2005).
  4. Y.D. Chaniago, J.K. Kim, M.J. Park, K.K. Koo, M.Y. Lee, J. Mater. Cycles Waste Manag 18 (2016) 366. https://doi.org/10.1007/s10163-014-0339-6
  5. S.K. Han, H.S. Jung, D.H. Ahn, J.Y. Kim, J. Korea Soc. Waste Manag. 31 (2014) 406. https://doi.org/10.9786/kswm.2014.31.4.406
  6. Z.J. Wang, H.L. Li, State Intellectual Property Office of The P.R.C. CN 104370742A (2015).
  7. Y.D. Chaniago, G.R. Harvianto, A. Bahadori, M.Y. Lee, Process Saf. Environ. Prot. 103 (2016) 412.
  8. M.R. Fenske, Ind. Eng. Chem. 24 (5) (1932) 482. https://doi.org/10.1021/ie50269a003
  9. A.J.V. Underwood, Chem. Eng. Prog. 44 (8) (1948) 603.
  10. E.R. Gilliland, Ind. Eng. Chem. 32 (9) (1940) 1220. https://doi.org/10.1021/ie50369a035
  11. Chem. Vogelpohl, Chem. Eng. Technol. 25 (2012) 9.
  12. N.J. Anderson, M.F. Doherty, Chem. Eng. Sci. 39 (1) (1984) 11. https://doi.org/10.1016/0009-2509(84)80125-6
  13. S.G. Levy, D.B. Van Dongen, M.F. Doherty, Ind. Eng. Chem. Fundam. 24 (1985) 463. https://doi.org/10.1021/i100020a011
  14. D.Y.C. Thong, F.J.L. Castillo, G.P. Towler, Chem. Eng. Sci. 55 (3) (2000) 625. https://doi.org/10.1016/S0009-2509(98)00496-5
  15. J. Bausa, R. Watzdorf, W. Marquardt, AIChE J. 44 (10) (1998) 2181. https://doi.org/10.1002/aic.690441008
  16. C.G. Antonio, A.J. Gutierrez, Ind. Eng. Chem. Res. 46 (20) (2007) 6635. https://doi.org/10.1021/ie061329h
  17. J.R. Knight, M.F. Doherty, Foundations of Computer-Aided Process Design: Proceedings of the Third Conference on Foundations of Computer-Aided Process Design (1990) 417.
  18. R.E. Rooks, V. Julka, M.F. Doherty, M.F. Malone, AIChE J. 44 (6) (1998) 1382. https://doi.org/10.1002/aic.690440616
  19. D.Y.C. Thong, M. Jobson, Chem. Eng. Sci. 56 (2001) 4369. https://doi.org/10.1016/S0009-2509(01)00055-0
  20. G. Liu, M. Jobson, R. Smith, O.M. Wahnschafft, Ind. Eng. Chem. Res. 43 (14) (2004) 3908. https://doi.org/10.1021/ie030678y
  21. S. Widagdo, W.D. Seider, Separations 42 (1996) No.1.
  22. A. Dimian, C. Bildea, A. Kiss, Integrated Design and Simulation of Chemical Processes, 2nd ed., vol. 13, Elsevier Science
  23. G.J.A.F. Fien, Y.A. Liu, Ind. Eng. Chem. Res. 33 (1994) 2505. https://doi.org/10.1021/ie00035a001
  24. R. Smith, Chemical Process Design and Integration, 2nd ed., Wiley, 2005.
  25. E. Kreyszig, Advanced Engineering Mathematics, 10th ed., Wiley, 2011.
  26. J.O. Maloney, Perry Chemical Engineering Handbook, 8th ed., The McGraw-Hill, 2008.
  27. V. Gerbaud, I.R. Donis, Distillation: Equipment and Processes, (2014) p. 201. (Chapter 6).
  28. I.D. Gil, P. Botia, O.F. Sanchez, Ind. Eng. Chem. Res. 48 (2009) 4858. https://doi.org/10.1021/ie801637h

Cited by

  1. Process Design Alternatives for Producing Ultra-high-purity Electronic-Grade Propylene Glycol Monomethyl Ether Acetate vol.58, pp.6, 2018, https://doi.org/10.1021/acs.iecr.8b04052
  2. Reactive Pressure-Swing Distillation toward Sustainable Process of Novel Continuous Ultra-High-Purity Electronic-Grade Propylene Glycol Monomethyl Ether Acetate Manufacture vol.7, pp.22, 2018, https://doi.org/10.1021/acssuschemeng.9b05251
  3. Thermodynamic and Topological Analysis of Phase Diagrams of Quaternary Systems with Internal Singular Points vol.54, pp.3, 2018, https://doi.org/10.1134/s0040579520020049
  4. Vapor-Liquid Equilibrium for the Binary of Propylene Glycol Methyl Ether Acetate + Ethyl Lactate and Propylene Glycol Methyl Ether + Ethyl Lactate at 101.3 and 20.0 kPa vol.66, pp.1, 2018, https://doi.org/10.1021/acs.jced.0c00488
  5. Pressure Swing-Based Reactive Distillation and Dividing Wall Column for Improving Manufacture of Propylene Glycol Monomethyl Ether Acetate vol.14, pp.21, 2018, https://doi.org/10.3390/en14217416