• Title/Summary/Keyword: Semi Empirical Method

Search Result 185, Processing Time 0.024 seconds

1/4 Car Vibration Simulation Using An Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4차량 진동 시뮬레이션)

  • Baek, Woon-Kyung;Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.638-643
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was dong using a quarter car simulator to confirm the simulation results with the Spencer MR damper model

  • PDF

Issues and Empirical Results for Improving Text Classification

  • Ko, Young-Joong;Seo, Jung-Yun
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.150-160
    • /
    • 2011
  • Automatic text classification has a long history and many studies have been conducted in this field. In particular, many machine learning algorithms and information retrieval techniques have been applied to text classification tasks. Even though much technical progress has been made in text classification, there is still room for improvement in text classification. In this paper, we will discuss remaining issues in improving text classification. In this paper, three improvement issues are presented including automatic training data generation, noisy data treatment and term weighting and indexing, and four actual studies and their empirical results for those issues are introduced. First, the semi-supervised learning technique is applied to text classification to efficiently create training data. For effective noisy data treatment, a noisy data reduction method and a robust text classifier from noisy data are developed as a solution. Finally, the term weighting and indexing technique is revised by reflecting the importance of sentences into term weight calculation using summarization techniques.

1/4 Car Vibration Simulation Using an Empirical MR Damper Model (실험적 MR댐퍼 모델을 사용한 1/4 차량 진동 시뮬레이션)

  • Yang, Bo-Suk;Lee, Jong-Seok;Kang, Tae-Ho;Ryu, Sung-Won;Baek, Woon-Kyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1016-1022
    • /
    • 2005
  • This study is about a semi-active quarter car simulation method including a MR(magneto-rheological) damper. The MR damper was modeled as Spencer model that can capture nonlinear and hysteretic behavior. The parameters of the Spencer model were extracted from a random excitation test and optimum treatment of the test data. Then, a suspension control algorithm based on Sky-hook theory was applied for the quarter car simulation. Also, an experiment was done using a quarter car simulator to confirm the simulation results with the Spencer MR damper model.

A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method (강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구)

  • 윤종훈;김낙수;임용택;이준두
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF

Inlet Air Temperature Effect on the Performance Efficiency of the Solid Fuel Ramjet through Semi-empirical Method (반 실험적 방법을 통한 고체 램 제트 성능에 대한 흡입 공기 온도의 영향)

  • Lee Tae-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.29-33
    • /
    • 2005
  • In the fuel of the solid fuel ramjet there are metal particles in order to improve the Isp like as solid rocket propellants. Because of the short combustion residence time these metallized fuels have low combustion efficiencies. Therefore it is necessary to increase the combustion efficiency and the inlet air temperature does an important role to this. The effect of the inlet air temperature to the performance is investigated through the semi-empirical method by adopting the experimental combustion efficiency. There are two factors to affect the inlet temperature, free stream temperature and the flight Mach number.

  • PDF

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

Experimental study of internal solitary wave loads on the semi-submersible platform

  • Zhang, Jingjing;Liu, Yi;Chen, Ke;You, Yunxiang;Duan, Jinlong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.718-733
    • /
    • 2021
  • A prediction method, based on the Morison equation as well as Froude-Krylov formula, is presented to simulate the loads acting on the columns and caissons of the semi-submersible platform induced by Internal Solitary Wave (ISW) respectively. Combined with the experimental results, empirical formulas of the drag and inertia coefficients in Morison equation can be determined as a function of the Keulegan-Carpenter (KC) number, Reynolds number (Re) and upper layer depth h1/h respectively. The experimental and calculated results are compared. And a good agreement is observed, which proves that the present prediction method can be used for analyzing the ISW-forces on the semi-submersible platform. Moreover, the results also demonstrate the layer thickness ratio has a significant effect upon the maximum horizontal forces on the columns and caissons, but both minimum horizontal and vertical forces are scarcely affected. In addition, the incoming wave directions may also contribute greatly to the values of horizontal forces exerted on the caissons, which can be ignored in the vertical force analysis.

Development of a Performance Prediction Method for Centrifugal Compressor Channel Diffusers

  • Kang, Jeong-Seek;Cho, Sung-Kook;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1144-1153
    • /
    • 2002
  • A hybrid performance prediction method is proposed in the present study. A channel diffuser is divided into four subregions: vaneless space, semi-vaneless space, channel, and channel exit region. One-dimensional compressible core flow and boundary layer calculation of each region with an incidence loss model and empirical correlation of residuary pressure recovery coefficient of a channel predict the performance of diffusers. Three channel diffusers are designed and tested for validating the developed prediction method. The pressure distributions from an impeller exit to the channel diffuser exit are measured and discussed for various operating conditions from choke to nearly surge conditions. The strong non-uniform pressure distribution which is caused by impeller-diffuser interaction is obtained over the vaneless and semi-vaneless spaces. The predicted performance shows good agreement with the measured performance of diffusers at a design condition as well as at off-design conditions.

Semi-Empirical MO Calculations on ${\pi}$-Nonbonded and ${\sigma}$-Conjugative Interactions (반경험적 분자궤도함수 계산법에 의한 ${\pi}$-비결합 및 ${\sigma}$-컨쥬게이션 상호작용에 관한 연구)

  • Ikchoon Lee;Young Gu Cheun;Kiyull Yang;Wang Ki Kim
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.195-204
    • /
    • 1982
  • Semi-empirical MO calculations, EHT, CNDO/2, MINDO/3, and MNDO met hods, were performed on various geometries of n-butane, n-alkyl radical and tetramethylene diracal (triplet) in order to compare eigenvalue and eigenvector properties with those obtained by STO-3G method. All methods predicted the same relative order of stabilities of various geometries for n-butane; geometrical preferences were found to be dominated by one-electron factor, ${\pi}$-orbital energy changes being more impotant in the semi-empirical methods. The hyperconjugative energy changes accompanying structural changes from $(n-{\sigma}{\ast})_{trans}$ to (n-{\sigma}{\ast})cis were underestimated in the EHT, CNDO/2 and MINDO/3, whereas those were overestimated in the MNDO. The net destabilizing effect of $(n-{\sigma}{\ast})_{trans}$ structure was mainly due to the large internuclear energy involved in the structure. Through-space interaction between $n_1$ and $n_2$ orbitals of diradical caused energy gap narrowing of ${\Delta}E_{sp}$ and ${\Delta}{\varepsilon}={\varepsilon}_0$-${\varepsilon}_{av}$; through-space interaction had opposing effect to that of through-bond interaction. Due to the less severe neglect of differential overlaps in the MNDO, this energy gap narrowing effect appeared amplified in the MNDO. In general orbital properties were found to be reproduced satisfactorily, but eigenvalue properties were not, in all the semi-empirical methods especially when ${\sigma}-{\sigma}{\ast}$ and n-$n-{\sigma}{\ast}$interactions were involved.

  • PDF

NUMERICAL SIMULATION OF THE POWER-ON BASE DRAG OF A MISSILE BODY (CFD를 이용한 유도탄 power-on 기저항력 해석)

  • Choi, J.H.;Lee, E.S.;Lee, K.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.16-22
    • /
    • 2015
  • The pressure is generally lower than that of the freestream at the base of a missile body due to the energy loss by the flow separation around the edge of the base. The base pressure changes in the presence of the thrust jet due to the interaction between the base flow of the missile and the jet flow. In this study, behavior of the missile base pressure by the change of the jet exit pressure and the freestream condition is investigated using the CFD(Computational Fluid Dynamics) method. Effects of the grid type and the freestream condition are tested. The results are compared with the semi-empirical predictions and the flight test data. The CFD results agree well with the flight test data. The semi-empirical predictions overestimate the base pressure when jet thrust is strong for low freestream speed.