DOI QR코드

DOI QR Code

Experimental study of internal solitary wave loads on the semi-submersible platform

  • Zhang, Jingjing (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Liu, Yi (Marine Design & Research Institute of China) ;
  • Chen, Ke (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • You, Yunxiang (State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University) ;
  • Duan, Jinlong (Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences)
  • Received : 2020.11.23
  • Accepted : 2021.08.12
  • Published : 2021.11.30

Abstract

A prediction method, based on the Morison equation as well as Froude-Krylov formula, is presented to simulate the loads acting on the columns and caissons of the semi-submersible platform induced by Internal Solitary Wave (ISW) respectively. Combined with the experimental results, empirical formulas of the drag and inertia coefficients in Morison equation can be determined as a function of the Keulegan-Carpenter (KC) number, Reynolds number (Re) and upper layer depth h1/h respectively. The experimental and calculated results are compared. And a good agreement is observed, which proves that the present prediction method can be used for analyzing the ISW-forces on the semi-submersible platform. Moreover, the results also demonstrate the layer thickness ratio has a significant effect upon the maximum horizontal forces on the columns and caissons, but both minimum horizontal and vertical forces are scarcely affected. In addition, the incoming wave directions may also contribute greatly to the values of horizontal forces exerted on the caissons, which can be ignored in the vertical force analysis.

Keywords

Acknowledgement

This research was funded by the National Natural Science Foundation of China, grant No. 11802301 and No. 11802176.

References

  1. Bole, J.B., Ebbesmeyer, C.C., Romea, R.D., 1994. Soliton currents in the South China sea: measurements and theoretical modeling. OTC 7417. In: 26th Annual Offshore Technology Conference, pp. 367-376. Houston, Texas. https://www.onepetro.org/download/conference-paper/OTC-7417-MS?id=conference-paper%2FOTC-7417-MS.
  2. Cai, S., Long, X., Gan, Z., 2003. A method to estimate the forces exerted by internal solitons on cylindrical piles. Ocean Eng. 30, 673-689. https://www.sciencedirect.com/science/article/pii/S0029801802000380. https://doi.org/10.1016/S0029-8018(02)00038-0
  3. Cai, S., Wang, S., Long, X., 2006. A simple estimation of the force exerted by internal solitons on cylindrical piles. Ocean Eng. 33 (7), 974-980. https://www.sciencedirect.com/science/article/pii/S0029801805001940. https://doi.org/10.1016/j.oceaneng.2005.05.012
  4. Cai, S., Long, X., Wang, S., 2008. Forces and torques exerted by internal solitons in shear flows on cylindrical piles. Appl. Ocean Res. 30 (1), 72-77. https://www.sciencedirect.com/science/article/pii/S0141118708000138. https://doi.org/10.1016/j.apor.2008.03.001
  5. Camassa, R., Choi, W., Michallet, H., Rusas, P.O., Sveen, J.K., 2006. On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J. Fluid Mech. 549, 1-23. https://www.researchgate.net/publication/231874141_On_the_realm_of_validity_of_strongly_nonlinear_asymptotic_approximations_for_internal_waves. https://doi.org/10.1017/S0022112005007226
  6. CHEN, J.H., 1996. Liuhua 11-1 deep sea oil-field development project in South China Sea. Chin. Offshore Platform 11 (1), 43-45. https://www.ixueshu.com/document/ef4abee81d2fbba9318947a18e7f9386.html.
  7. Chen, C., Hsu, J.R., Cheng, M., 2007. An investigation on internal solitary waves in a two-layer fluid: propagation and refection from steep slopes. Ocean Eng. 34, 171-184. https://www.sciencedirect.com/science/article/pii/S002980180600076X. https://doi.org/10.1016/j.oceaneng.2005.11.020
  8. Choi, W., Camassa, R., 1999. Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 396, 1-36. https://www.sciencedirect.com/science/article/pii/S030193229780359X. https://doi.org/10.1017/s0022112099005820
  9. Djordjevic, V.D., Redekopp, L.G., 1978. The fission and disintegration of internal solitary waves moving over two-dimensional topography. J. Phys. Oceanogr. 8 (6), 1016-1024. https://watermark.silverchair.com/1520-0485(1978)008_1016_tfadoi_2_0_co_2.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAvEwggLtBgkqhkiG9w0BBwagggLeMIIC2gIBADCCAtMGCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMrlyhmlSm6quxWlPLAgEQgIICpIpxUeZKA7PgSRA1. https://doi.org/10.1175/1520-0485(1978)008<1016:TFADOI>2.0.CO;2
  10. Ebbesmeyer, C.C., Coomes, C.A., Hamilton, R.C., 1991. New observations on internal waves (solitons) in the South China Sea using an acoustic Doppler current profiler. Mar. Technol. Soc. J. 91, 165-175. https://www.onepetro.org/download/conference-paper/OTC-10793-MS?id=conference-paper%2FOTC-10793-MS.
  11. Faltinsen, O., 1993. Sea Loads on Ships and Offshore Structures. Cambridge University Press. http://gen.lib.rus.ec/book/index.php?md5=1C8C62FBB867D15BA95E4B52FB10DD6B.
  12. Goryachkin, Yu N., Ivanov, V.A., Pelinovsky, E.N., 1992. Transformation of internal tidal waves over the Guinean Shelf. Sov. J. Phys. Oceanogr. 3, 309-315. https://link.springer.com/article/10.1007/BF02197307.
  13. Helfrich, K.R., Melville, W.K., 2006. Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395-425. https://www.researchgate.net/publication/33547696_Long_nonlinear_internal_waves_Ann_Rev_Fluid_Mech?ev=auth_pub. https://doi.org/10.1146/annurev.fluid.38.050304.092129
  14. Huang, W.H., You, Y.X., Shi, Q., 2013. The experiments of internal solitary wave load and their theoretical model for a semi-submersible platform. Chin. J. Hydrodynamic. 28 (6), 644-657. http://en.cnki.com.cn/Article_en/CJFDTotal-SDLJ201306002.htm.
  15. Hutter, K., 2012. Nonlinear Internal Waves in Lakes. Springer, Berlin. https://www.researchgate.net/publication/321609998_Nonlinear_Internal_Waves_in_Lakes.
  16. Kakutani, T., Yamasaki, N., 1978. Solitary waves on a two-layer fluid. J. Phys. Soc. Jpn. 45 (2), 674-679. https://journals.jps.jp/doi/abs/10.1143/JPSJ.45.674.
  17. Kao, T.W., Pan, F.S., Renouard, D., 1985. Internal solitons on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159, 19-53. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/986FC16C6795E0A3DEFBEDCAAACA51E3/S0022112085003081a.pdf/internal_solitons_on_the_pycnocline_generation_propagation_and_shoaling_and_breaking_over_a_slope.pdf. https://doi.org/10.1017/S0022112085003081
  18. Koop, C.G., Butler, G., 1981. An investigation on solitary internal waves in a two-fluid system. J. Fluid Mech. 112, 225-251. https://www.cambridge.org/core/services/aop-cambridge-core/content/view/AC886941E613996138907626D7CFC16C/S0022112081000372a.pdf/an_investigation_of_internal_solitary_waves_in_a_twofluid_system.pdf. https://doi.org/10.1017/S0022112081000372
  19. Lamb, K.G., 1994. Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res. 99, 843-864. http://mseas.mit.edu/download/evheubel/LambJGRO1994.pdf. https://doi.org/10.1029/93JC02514
  20. Leichter, J.J., Deane, G.B., Stokes, M.D., 2005. Spatial and temporal variability of internal wave forcing on a Coral Reef. J. Phys. Oceanogr. 35 (11), 1945-1959. https://www.proquest.com/docview/223940224?OpenUrlRefId=info:xri/sid:baidu&accountid=13818. https://doi.org/10.1175/JPO2808.1
  21. Michallet, H., Barthelemy, E., 1997. Ultrasonic probes and data processing to study interfacial solitary waves. Exp. Fluid 22 (5), 380-386. https://link.springer.com/article/10.1007/s003480050064.
  22. Miyata, M., 1985. An internal solitary wave of large amplitude. La Mer 23, 43-48. https://www.mendeley.com/catalogue/c330be44-305e-3ef3-a530-f6e39d7d6807/.
  23. Morison, J.R., Obrien, M.P., Johnson, J.W., Schaaf, S.A., 1950. The force exerted by surface waves on piles. J. Petrol. Technol. 2 (5), 149-154. https://www.onepetro.org/journal-paper/SPE-950149-G. https://doi.org/10.2118/950149-G
  24. Osborne, A.R., Burch, T.L., 1980. Internal solitons in the Andaman sea. Science 208 (4443), 451-460. https://science.sciencemag.org/content/208/4443/451. https://doi.org/10.1126/science.208.4443.451
  25. Wang, X., Lin, Z.Y., You, Y.X., 2015. Numerical simulation for the load characteristics of internal solitary waves on the semi-submersible platform. J. Ship Mech. 19 (10), 1173-1184. http://en.cnki.com.cn/Article_en/CJFDTOTALCBLX201510002.htm. https://doi.org/10.3969/j.issn.1007-7294.2015.10.002
  26. Wang, S.D., Wei, G., Du, H., Wu, J.L., Wang, X.L., 2020. Experimental investigation of the wave-flow structure of an oblique internal solitary wave and its force exerted on a slender body. Ocean Eng. 201. https://www.sciencedirect.com/science/article/pii/S002980182030130X.
  27. Wessels, F., Hutter, K., 1996. Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr. 26 (1), 5-20. https://watermark.silverchair.com/1520-0485(1996)026_0005_ioiwwa_2_0_co_2.pdf?token=AQECAHi208BE49Ooan9kkhW_Ercy7Dm3ZL_9Cf3qfKAc485ysgAAAt0wggLZBgkqhkiG9w0BBwagggLKMIICxgIBADCCAr8GCSqGSIb3DQEHATAeBglghkgBZQMEAS4wEQQMQxvclnFf56qkW5xYAgEQgIICkM4a6sOz0vCGLUx6. https://doi.org/10.1175/1520-0485(1996)026<0005:IOIWWA>2.0.CO;2
  28. Xie, J., Jian, Y., Yang, L., 2010. Strongly nonlinear internal soliton load on a small vertical circular cylinder in two-layer fluids. Appl. Math. Model. 34 (8), 2089-2101. https://www.sciencedirect.com/science/article/pii/S0307904X09003539. https://doi.org/10.1016/j.apm.2009.10.021
  29. Xie, J., Xu, J., Cai, S., 2011. A numerical study of the load on cylindrical piles exerted by internal solitary waves. J. Fluid Struct. 27 (8), 1252-1261. https://www.sciencedirect.com/science/article/pii/S0889974611000697. https://doi.org/10.1016/j.jfluidstructs.2011.04.007
  30. You, Y.X., Li, W., He, J.Y., 2010. Hydrodynamic characteristic of tension leg platforms in ocean internal solitary waves. J. Shanghai Jiao Tong Univ. (Sci.) 44 (1), 12-17. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SHJT201001013.htm.
  31. You, Y.X., Li, W., Hu, T.Q., 2012. Dynamic responses of a semi-submersible platform in internal solitary waves. Ocean Eng. 30 (2), 1-7. http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYGC201202002.htm. https://doi.org/10.3969/j.issn.1005-9865.2012.02.001
  32. Zhang, W.G., Duda, T.F., Udovydchenkov, A.A., 2014. Modeling and analysis of internaltide generation and beamlike onshore propagation in the vicinity of shelf break Canyons. J. Phys. Oceanogr. 44, 834-849. https://www.proquest.com/docview/1509068715?OpenUrlRefId=info:xri/sid:baidu&accountid=13818. https://doi.org/10.1175/JPO-D-13-0179.1