• Title/Summary/Keyword: Semantic Knowledge-based Model

Search Result 114, Processing Time 0.027 seconds

A study on integrating and discovery of semantic based knowledge model (의미 기반의 지식모델 통합과 탐색에 관한 연구)

  • Chun, Seung-Su
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.99-106
    • /
    • 2014
  • Generation and analysis methods have been proposed in recent years, such as using a natural language and formal language processing, artificial intelligence algorithms based knowledge model is effective meaning. its semantic based knowledge model has been used effective decision making tree and problem solving about specific context. and it was based on static generation and regression analysis, trend analysis with behavioral model, simulation support for macroeconomic forecasting mode on especially in a variety of complex systems and social network analysis. In this study, in this sense, integrating knowledge-based models, This paper propose a text mining derived from the inter-Topic model Integrated formal methods and Algorithms. First, a method for converting automatically knowledge map is derived from text mining keyword map and integrate it into the semantic knowledge model for this purpose. This paper propose an algorithm to derive a method of projecting a significant topic map from the map and the keyword semantically equivalent model. Integrated semantic-based knowledge model is available.

Knowledge Conversion between Conceptual Graph Model and Resource Description Framework

  • Kim, Jin-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.123-129
    • /
    • 2007
  • On the Semantic Web, the content of the documents must be explicitly represented through metadata in order to enable contents-based inference. In this study, we propose a mechanism to convert the Conceptual Graph (CG) into Resource Description Framework (RDF). Quite a large number or representation languages for representing knowledge on the Web have been established over the last decade. Most of these researches are focused on design of independent knowledge description. On the Semantic Web, however, a knowledge conversion mechanism will be needed to exchange the knowledge used in independent devices. In this study, the CG could give an entire conceptual view of knowledge and RDF can represent that knowledge on the Semantic Web. Then the CG-based object oriented PROLOG could support the natural inference based on that knowledge. Therefore, our proposed knowledge conversion mechanism will be used in the designing of Semantic Web-based knowledge representation and inference systems.

Using Semantic Knowledge in the Uyghur-Chinese Person Name Transliteration

  • Murat, Alim;Osman, Turghun;Yang, Yating;Zhou, Xi;Wang, Lei;Li, Xiao
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.716-730
    • /
    • 2017
  • In this paper, we propose a transliteration approach based on semantic information (i.e., language origin and gender) which are automatically learnt from the person name, aiming to transliterate the person name of Uyghur into Chinese. The proposed approach integrates semantic scores (i.e., performance on language origin and gender detection) with general transliteration model and generates the semantic knowledge-based model which can produce the best candidate transliteration results. In the experiment, we use the datasets which contain the person names of different language origins: Uyghur and Chinese. The results show that the proposed semantic transliteration model substantially outperforms the general transliteration model and greatly improves the mean reciprocal rank (MRR) performance on two datasets, as well as aids in developing more efficient transliteration for named entities.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

A Framework of Internet Shopping Decision Making Based on Semantic Web Constraint Language (의미망 제약식언어를 기반으로 한 인터넷 쇼핑 의사결정 틀)

  • Lee, Myung-Jin;Kim, Hak-Jin;Kim, Woo-Ju
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.3
    • /
    • pp.29-42
    • /
    • 2008
  • Semantic Web society initially focused only on data but has gradually moved toward knowledge. Recently rule beyond ontology has emerged as a key element of the Semantic Web. All of these activities are obviously aiming at making data and knowledge on the Web sharable and reusable between various entities around the world. If one of ultimate visions of the Semantic Web is to increase human's decision making quality assisted by machines, there is a missing but important part to be shared and reused. It is knowledge about constraints on data and concepts represented by ontology which should be emphasized more. In this paper, we propose Semantic Web Constraint Language (SWCL) based on OWL and show how effective SWCL can be in representing and solving an internet shopper's decision making problem by an implementation of a shopping agent in the Semantic Web environment.

A Study on the Improvement of Performance of Concept-Based Information Retrieval Model Using a Distributed Subject Knowledge Base (주제별 분산 지식베이스에 의한 개념기반 정보검색시스템의 성능향상에 관한 연구)

  • 노영희
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.1
    • /
    • pp.47-69
    • /
    • 2002
  • The concept based retrieval model has shown a higher performance than those of the simple matching function method or the P-norm retrieval method introduced to compensate the demerits of the Boolean retrieval model. However. it takes too long to create a semantic-net knowledge base, which is essential in concept exploration. In order to solve such demerits. a method was sought out by creating a distributed knowledge base by subjects to reduce construction time without hindering the performance of retrieval.

Graph-Based Word Sense Disambiguation Using Iterative Approach (반복적 기법을 사용한 그래프 기반 단어 모호성 해소)

  • Kang, Sangwoo
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.2
    • /
    • pp.102-110
    • /
    • 2017
  • Current word sense disambiguation techniques employ various machine learning-based methods. Various approaches have been proposed to address this problem, including the knowledge base approach. This approach defines the sense of an ambiguous word in accordance with knowledge base information with no training corpus. In unsupervised learning techniques that use a knowledge base approach, graph-based and similarity-based methods have been the main research areas. The graph-based method has the advantage of constructing a semantic graph that delineates all paths between different senses that an ambiguous word may have. However, unnecessary semantic paths may be introduced, thereby increasing the risk of errors. To solve this problem and construct a fine-grained graph, in this paper, we propose a model that iteratively constructs the graph while eliminating unnecessary nodes and edges, i.e., senses and semantic paths. The hybrid similarity estimation model was applied to estimate a more accurate sense in the constructed semantic graph. Because the proposed model uses BabelNet, a multilingual lexical knowledge base, the model is not limited to a specific language.

Ontology BIM-based Knowledge Service Framework Architecture Development (온톨로지 BIM 기반 지식 서비스 프레임웍 아키텍처 개발)

  • Kang, Tae-Wook
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.52-60
    • /
    • 2022
  • Recently, the demand for connection between various heterogeneous dataset and BIM as a construction data model hub is increasing. In the past, in order to connect model between BIM and heterogeneous dataset, related dataset was stored in the RDBMS, and the service was provided by programming a method to link with the BIM object. This approach causes problems such as the need to modify the database schema and business logic, and the migration of existing data when requirements change. This problem adversely affects the scalability, reusability, and maintainability of model information. This study proposes an ontology BIM-based knowledge service framework considering the connectivity and scalability between BIM and heterogeneous dataset. Through the proposed framework, ontology BIM mapping, semantic information query method for linking between knowledge-expressing dataset and BIM are presented. In addition, to identify the effectiveness of the proposed method, the prototype is developed. Also, the effectiveness and considerations of the ontology BIM-based knowledge service framework are derived.

A Study on the Conceptual Modeling and Implementation of a Semantic Search System (시맨틱 검색 시스템의 개념적 모형화와 그 구현에 대한 연구)

  • Hana, Dong-Il;Kwonb, Hyeong-In;Chong, Hak-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • This paper proposes a design and realization for the semantic search system. The proposed model includes three Architecture Layers of a Semantic Search System ; (they are conceptually named as) the Knowledge Acquisition, the Knowledge Representation and the Knowledge Utilization. Each of these three Layers are designed to interactively work together, so as to maximize the users' information needs. The Knowledge Acquisition Layer includes index and storage of Semantic Metadata from various source of web contents(eg : text, image, multimedia and so on). The Knowledge Representation Layer includes the ontology schema and instance, through the process of semantic search by ontology based query expansion. Finally, the Knowledge Utilization Layer includes the users to search query intuitively, and get its results without the users'knowledge of semantic web language or ontology. So far as the design and the realization of the semantic search site is concerned, the proposedsemantic search system will offer useful implications to the researchers and practitioners so as to improve the research level to the commercial use.

  • PDF

A Study on Ontology-based Keywords Structuring for Efficient Information Retrieval (연구.학술정보 효율적 검색을 위한 온톨로지 기반의 주제 색인어 구조화 방안 연구)

  • Song, In-Seok
    • Journal of Information Management
    • /
    • v.39 no.4
    • /
    • pp.121-154
    • /
    • 2008
  • In this paper, a ontology-based keyword structuring method is proposed to represent the knowledge structure of scholarly documents and to make inferences from the semantic relationships holding among them. The characteristics of thesaurus as a knowledge organization system(KOS) for subject heading is critically reviewed from the information retrieval point of view. The domain concepts are identified and classified by analysis of the information activities occurring in a general research process based on scholarly sensemaking model. The ontological structure of keyword set is defined in terms of the semantic relationship of the canonical concepts which constitute scholarly documents such as journal articles. As a result, each ontologically structured keyword set of a document represents the knowledge structure of the corresponding document as semantic index. By means of the axioms and inference rules defined for information needs, users can efficiently explore the scholarly communication network built on the semantic relationship among documents in an analytic way based on the scholarly sensemaking model in oder to efficiently retrieve the relevant information for problem solving.