• Title/Summary/Keyword: Self-propagating reaction

Search Result 95, Processing Time 0.027 seconds

Preparation of Titanium Carbide Fiber-Reinforced Alumina Ceramic Matrix Composites by Self-Propagating High-Temperature Synthesis

  • Yun, Jondo;Bang, Hwancheol
    • The Korean Journal of Ceramics
    • /
    • v.4 no.3
    • /
    • pp.171-175
    • /
    • 1998
  • $Al_2O_3$-TiC composites were prepared from aluminum, titanium oxide, and carbon fibers by self-propagating high-temperature synthesis(SHS). After the SHS reaction, the TiC phase in the sample was found either fibrous or non-fibrous shape. The fraction of the fibrous TiC phase varied with the amount of $Al_2O_3$ diluent addition. The optimum amount of diluent to make fibrous carbide was determined to be 30%. The fibers were hollow inside and made of multiple grains with a composition of titanium carbide. The hollow fiber formation mechanism was suggested and discussed. The synthesized powders were consolidated to dense composites by hot pressing at $1750^{\circ}C$ under 30 MPa.

  • PDF

Formation of Fe Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전반응합성과 확산 열처리를 이용한 FeAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook;Yun, Young-Mok
    • Korean Journal of Materials Research
    • /
    • v.18 no.3
    • /
    • pp.153-158
    • /
    • 2008
  • Fe-aluminides have the potential to replace many types of stainless steels that are currently used in structural applications. Once commercialized, it is expected that they will be twice as strong as stainless steels with higher corrosion resistance at high temperatures, while their average production cost will be approximately 10% of that of stainless steels. Self-propagating, high-temperature Synthesis (SHS) has been used to produce intermetallic and ceramic compounds from reactions between elemental constituents. The driving force for the SHS is the high thermodynamic stability during the formation of the intermetallic compound. Therefore, the advantages of the SHS method include a higher purity of the products, low energy requirements and the relative simplicity of the process. In this work, a Fe-aluminide intermetallic compound was formed from high-purity elemental Fe and Al foils via a SHS reaction in a hot press. The formation of iron aluminides at the interface between the Fe and Al foil was observed to be controlled by the temperature, pressure and heating rate. Particularly, the heating rate plays the most important role in the formation of the intermetallic compound during the SHS reaction. According to a DSC analysis, a SHS reaction appeared at two different temperatures below and above the metaling point of Al. It was also observed that the SHS reaction temperatures increased as the heating rate increased. A fully dense, well-bonded intermetallic composite sheet with a thickness of $700\;{\mu}m$ was formed by a heat treatment at $665^{\circ}C$ for 15 hours after a SHS reaction of alternatively layered 10 Fe and 9 Al foils. The phases and microstructures of the intermetallic composite sheets were confirmed by EPMA and XRD analyses.

Chromate Refractory by Combustion Process (연소합성에 의한 크로메이트 내화물 제조)

  • 김형순;한정환
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1437-1442
    • /
    • 1994
  • Self propagating synthesis and thermal explosion of combustion reactions were applied to Al/K2Cr2O7/Al2O3 system as the first stage for a production of magnesia-chromium refractory. Several factors related to products made by two combustion reactions were considered and properties of products were characterised. Two processes were required to preheat upto at least 80$0^{\circ}C$ for the thermal explosion and the self propagating synthesis. These processes were so violent and explosive that alumina as diluent was added to the system in order to absorb the reaction heat and reduce the reaction rate. The products consisted of crystal phases of KAl5O8, Cr2O3, Al2O3, K2CrO4, and K2Al2O4.3H2O. The amount of KAl5O8 and K2Al2O4.3H2O crystal phases of products were decreased with further addition of alumina.

  • PDF

Study on Self-Propagating High-Temperature Synthesis of TiN Powder (SHS 공정에 의한 TiN 분말합성에 관한 연구)

  • ;S.G. Vadchenco
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 1996
  • Self-propagating High-temperature Synthesis of Ti+N system has been investigated using the cylindrical high pressure reactor. The nitrogen pressure was varied from 40 to 80 atmosphere and TiNx(x=0.55) powder produced by SHS process was used as a diluent in order to control the reaction. Both the velocity of surface reaction and the ratio of TiN synthesis increased with increasing the nitrogen pressure. As the amount of diluent increases the degree of conversion to titanium nitride increases. Homogenious TiN powder was obtained in the composition 50Ti+50TiN0.94(diluent)

  • PDF

Fabrication of AlN Powder by Self-propagating High-temperature Synthesis I. Synthesis of AlN Powder (자전고온 반응 합성법에 의한 AlN 분말의 제조 I.AlN 분말의 제조)

  • 신재선;안도환;김석윤;김용석
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.9
    • /
    • pp.961-968
    • /
    • 1996
  • The aluminum nitride was synthesized by the self-propagating high-temperature synthesis(SHS). The synthe-sis was used aluminum powder mixed with AlN powder as reactant and the control factors affected to synthesis were considered compact density pressure of reaction gas AlN diluent content and aluminum powder size. The SHS reaction conducted with a reactant containing 50% AlN diluent under 0.8MPa nitrogen gas pressure yielded a complete conversion of aluminum powder to AlN powders. The size and purity of AlN produced were found to be comparable with that of AlN produced by the carbothermal nitrogen method.

  • PDF

Formation of a V-Added Ti Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing (고온자전합성과 확산 열처리를 이용한 V 이 첨가된 TiAl계 금속간화합물 복합판재의 제조)

  • Kim, Yeon-Wook
    • Korean Journal of Materials Research
    • /
    • v.12 no.9
    • /
    • pp.696-700
    • /
    • 2002
  • The Ti-aluminide intermetallic compound was formed from high purity elemental Ti and Al foils by self-propagating, high-temperature synthesis(SHS) in hot press. formation of $TiAl_3$ at the interface between Ti and Al foils was controlled by temperature, pressure, heating rate, and so on. According to the thermal analysis, it is known in this study that the heating rate is the most important factor to form the intermetallic compound by this SHS reaction. The V layer addition between Al and Ti foils increased SHS reaction temperatures. The fully dense, well-boned inter-metallic composite($TiA1/Ti_3$Al) sheets of 700 m thickness were formed by heat treatment at $1000^{\circ}C$ for 10 hours after the SHS reaction of alternatively layered 10 Ti and 9 Al foils with the V coating layer. The phases and microstructures of intermetallic composite sheets were confirmed by EPMA and XRD.