DOI QR코드

DOI QR Code

Formation of a V-Added Ti Aluminide Multilayered Sheet by Self-Propagating High-Temperature Synthesis and Diffusion Annealing

고온자전합성과 확산 열처리를 이용한 V 이 첨가된 TiAl계 금속간화합물 복합판재의 제조

  • Kim, Yeon-Wook (Department of Materials Science & Engineering, Keimyung University)
  • 김연욱 (계명대학교 재료공학과)
  • Published : 2002.09.01

Abstract

The Ti-aluminide intermetallic compound was formed from high purity elemental Ti and Al foils by self-propagating, high-temperature synthesis(SHS) in hot press. formation of $TiAl_3$ at the interface between Ti and Al foils was controlled by temperature, pressure, heating rate, and so on. According to the thermal analysis, it is known in this study that the heating rate is the most important factor to form the intermetallic compound by this SHS reaction. The V layer addition between Al and Ti foils increased SHS reaction temperatures. The fully dense, well-boned inter-metallic composite($TiA1/Ti_3$Al) sheets of 700 m thickness were formed by heat treatment at $1000^{\circ}C$ for 10 hours after the SHS reaction of alternatively layered 10 Ti and 9 Al foils with the V coating layer. The phases and microstructures of intermetallic composite sheets were confirmed by EPMA and XRD.

Keywords

References

  1. A.G. Merzhanov, 'Self-Propagating High-Temperature Synthesis', Fizik. Khim. Sovrem. Problem, 6 (1983)
  2. O. Yamada, Y. Miyamoto and M. Koizumi, Am. Ceram. Soc. Bull., 64 (2),319 (1985)
  3. J.B. Holt and Z.A. M unir, J. Mater. Sci., 21, 251 (1986) https://doi.org/10.1007/BF01144729
  4. J. Kajuch, J.D. Rigney, and J.J. Lewandowski, Mater. Sci. Eng., 155A, 59 (1992) https://doi.org/10.1016/0921-5093(92)90312-O
  5. H.E. Maupin and J.C. Rawers, J. Mater. Sci. Lett., 12, 540 (1993) https://doi.org/10.1007/BF00278316
  6. J.C. Rawerts, J.S. Hansen, J.A. Hawk and D.E. Alman, J. Mater. Sci. Lett., 13,1357 (1994) https://doi.org/10.1007/BF00624495
  7. R.C. Rawers, D.E. Alman and J.A. Hawk, Int. J. Self-Prop. High Temp. Syn., 2(1), 12 (1993)
  8. D. Banerjee, A.K. Gogia, T.K. Nandy and V.A. Joshi, Acta Metall., 36, 871 (1988) https://doi.org/10.1016/0001-6160(88)90141-1
  9. V.R Kattner and W.J. Botinger, Mater. Sci. Eng., 152A, 9 (1992) https://doi.org/10.1016/0921-5093(92)90039-4
  10. Y. W. Kim, J. Mat., 41, 24 (1989)
  11. Yeonwook Kim, Byungkwan Kim, Taewoon Nam, Boyoung Hur and Young jig Kim, Korean Journal of Materials Research, 8 (11), 987 (1998)
  12. H.E. Maupin and J.C. Brawers, Journal of Materials Science Letters, 12, 540 (1993) https://doi.org/10.1007/BF00278316
  13. J.C. Brawers, J.B. Hansen, D.E. Alman, J.A. Hawk and D.E. Alman, Journal of Materials Science Letters, 13, 1357 (1994) https://doi.org/10.1007/BF00624495
  14. M. Susata, S. Bhargava and S. Sangal, Journal of Materials Science Letters, 16, 1175 (1997) https://doi.org/10.1023/A:1018509026596
  15. D.E. Alman, J.C. Brawers and J.A. Hawk, Metallurgical and Materials Transactiona A, 26A, 589 (1995) https://doi.org/10.1007/BF02663908
  16. J.H. Founelle, J.J. Donovan, S. Kim and J.H. Perepezko, Proceedings of 2nd Conference of the International Union of Microbeam Analysis Societies, Kailua-Kana, Hawaii, 425 (2000)
  17. T.B. Massalski, Binart Alloy Phase Diagram, J.L. Marray, S.H. Bennett and H. Baker Eds., ASM, Materials Park, 1, 175 (1986)