• 제목/요약/키워드: Self-organizing framework

검색결과 32건 처리시간 0.029초

시스템-오리엔터 분석틀을 통한 도시 지속가능성 지표의 지역적 특성에 따른 적용방안 -한국과 미국을 사례로 하여- (The Application of Indicator Sets of Urban Sustainability Based on System-Orientor Framework Concerning to Regionality in Korea and US)

  • 이희연;최재헌
    • 대한지리학회지
    • /
    • 제36권4호
    • /
    • pp.382-401
    • /
    • 2001
  • 도시란 상호작용하는 여러 개의 하위 시스템들이 연계되어 있는 하나의 거대한 시스템이라고 보고 도시의 지속가능성을 측정.평가하기 위해 시스템-오리엔터의 분석들을 적용하여 표준화된 지표군을 추출하였다. 이렇게 설정된 지표들을 지역적 특성을 고려하여 적용할 수 있는 방안으로 규범적-분석적-실천적 차원으로 구분하여 구체적인 지침을 제시하였다. 실제로 한국의 성남시와 미국의 세인트폴시를 사례지역으로 선정하여 두 도시의 지속가능성을 측정.평가하였다. 지속가능성 수준을 측정하는 변수들에 대한 자료 가용성과 각 오리엔터를 평가하기 위한 최소요구치 와 만족도 목표수준에 대한 자료의 구축이 향후 과제이다

  • PDF

Dense RGB-D Map-Based Human Tracking and Activity Recognition using Skin Joints Features and Self-Organizing Map

  • Farooq, Adnan;Jalal, Ahmad;Kamal, Shaharyar
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1856-1869
    • /
    • 2015
  • This paper addresses the issues of 3D human activity detection, tracking and recognition from RGB-D video sequences using a feature structured framework. During human tracking and activity recognition, initially, dense depth images are captured using depth camera. In order to track human silhouettes, we considered spatial/temporal continuity, constraints of human motion information and compute centroids of each activity based on chain coding mechanism and centroids point extraction. In body skin joints features, we estimate human body skin color to identify human body parts (i.e., head, hands, and feet) likely to extract joint points information. These joints points are further processed as feature extraction process including distance position features and centroid distance features. Lastly, self-organized maps are used to recognize different activities. Experimental results demonstrate that the proposed method is reliable and efficient in recognizing human poses at different realistic scenes. The proposed system should be applicable to different consumer application systems such as healthcare system, video surveillance system and indoor monitoring systems which track and recognize different activities of multiple users.

하이브리드 신경회로망을 이용한 한시간전 계통한계가격 예측 (A Hybrid Neural Network Framework for Hour-Ahead System Marginal Price Forecasting)

  • 정상윤;이정규;박종배;신중린;김성수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.162-164
    • /
    • 2005
  • This paper presents an hour-ahead System Marginal Price (SMP) forecasting framework based on a neural network. Recently, the deregulation in power industries has impacted on the power system operational problems. The bidding strategy of market participants in energy market is highly dependent on the short-term price levels. Therefore, short-term SMP forecasting is a very important issue to market participants to maximize their profits. and to market operator who may wish to operate the electricity market in a stable sense. The proposed hybrid neural network is composed of tow parts. First part of this scheme is pattern classification to input data using Kohonen Self-Organizing Map (SOM) and the second part is SMP forecasting using back-propagation neural network that has three layers. This paper compares the forecasting results using classified input data and unclassified input data. The proposed technique is trained, validated and tested with historical date of Korea Power Exchange (KPX) in 2002.

  • PDF

Motion Planning and Control for Mobile Robot with SOFM

  • Yun, Seok-Min;Choi, Jin-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1039-1043
    • /
    • 2005
  • Despite the many significant advances made in robot architecture, the basic approaches are deliberative and reactive methods. They are quite different in recognizing outer environment and inner operating mechanism. For this reason, they have almost opposite characteristics. Later, researchers integrate these two approaches into hybrid architecture. In such architecture, Reactive module also called low-level motion control module have advantage in real-time reacting and sensing outer environment; Deliberative module also called high-level task planning module is good at planning task using world knowledge, reasoning and intelligent computing. This paper presents a framework of the integrated planning and control for mobile robot navigation. Unlike the existing hybrid architecture, it learns topological map from the world map by using MST (Minimum Spanning Tree)-based SOFM (Self-Organizing Feature Map) algorithm. High-level planning module plans simple tasks to low-level control module and low-level control module feedbacks the environment information to high-level planning module. This method allows for a tight integration between high-level and low-level modules, which provide real-time performance and strong adaptability and reactivity to outer environment and its unforeseen changes. This proposed framework is verified by simulation.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AMI 로봇의 제어 시스템 설계 (Design of AMI Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;김휘동;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.393-398
    • /
    • 2002
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. forthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

Back Propagation 알고리즘을 이용한 산업용 로봇의 견실 제어 (Robust Control of Industrial Robot Based on Back Propagation Algorithm)

  • 윤주식;이희섭;윤대식;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.253-257
    • /
    • 2004
  • Neural networks are works are used in the framework of sensor based tracking control of robot manipulators. They learn by practice movements the relationship between PSD(an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple back propagation networks one of which is selected according to which division(corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

신경회로망과 위치 검출장치를 사용한 로보트 추적 제어기의 구현 (A neural network based real-time robot tracking controller using position sensitive detectors)

  • 박형권;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.660-665
    • /
    • 1993
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.

  • PDF

PSD 및 역전파 알고리즘를 이용한 AM1 로봇의 제어 시스템 설계 (Design of AM1 Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;서운학;이종붕;이희섭;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.239-243
    • /
    • 2001
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

역전파 알고리즘 및 PSD를 이용한 로봇의 결실제어 (Robust control of industrial robot using back propagation algorithm and PSD)

  • 이재욱
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.171-175
    • /
    • 2000
  • Neural networks are in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF

PSD 및 역전파 알고리즘을 이용한 산업용 로봇의 제어 시스템 설계 (Design of Industrial Robot Control System Using PSD and Back Propagation Algorithm)

  • 이재욱;이희섭;김휘동;김재실;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.108-112
    • /
    • 2000
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD (an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very training and processing implementation required for real time control.

  • PDF