• 제목/요약/키워드: Self-navigation technology

검색결과 85건 처리시간 0.024초

레이저 관성항법장치에서 링레이저 자이로 디더 운동에 의한 가속도계 공진이 자체 정렬/항법 성능에 미치는 영향 분석 (Self-Alignment/Navigation Performance Analysis in the Accelerometer Resonance State Generated by Dither Motion of Ring Laser Gyroscope in Laser Inertial Navigation System)

  • 김천중;임경아;김선아
    • 한국군사과학기술학회지
    • /
    • 제24권6호
    • /
    • pp.577-590
    • /
    • 2021
  • In this paper, we theoretically analyzed the self-alignment/navigation performance in the accelerometer resonance state generated by dither motion of ring laser gyroscope in LINS and verified it through simulation. As a result of analysis, it is confirmed that the amplitude of the accelerometer measurement amplified in the accelerometer resonance state is decreased in the process of sampling per the navigation calculation period and that frequency is changed by the aliasing effect too. It was also analysed that the attitude error in self-alignment is determined by the amplitude/frequency of the accelerometer measurement, the gain of the self-alignment loop, and the velocity and position error in the navigation is determined by the amplitude/frequency/phase error of the accelerometer measurement. This analysis and simulation results show that the self-alignment and navigation performance is not be degraded only when the amplification factor of the accelerometer measurement in the accelerometer resonance state is 3 or less

공항 항행시스템 운영자 관점에서 자존감이 운영성과에 미치는 영향 (The Effect of Self-esteem on Operation Performance: Perspective on Air Navigation System Operator in Airport)

  • 송종선;이영길
    • 한국항행학회논문지
    • /
    • 제20권6호
    • /
    • pp.544-555
    • /
    • 2016
  • 공항조직은 자존감을 획득하는 데 지속적으로 투자해야 한다. 이는 자존감이 보다 더 생산적이 될 것이기 때문이다. 본 논문의 목적은 항행시스템이 운영성과에 미치는 영향을 분석하고 자존감의 조절효과를 검증하는 것이다. 인천국제공항과 김포국제공항의 설문조사는 항행시스템 운영자 관점에서 공항의 운영성과를 설명할 수 있는 요인들을 더 잘 이해하기 위해 수행되었다. 이것은 항행정책, 유지보수, 증진활동 및 자존감의 증강된 활동 및 공항의 운영성과와 같은 구성요소를 포함한다. 본 연구의 발견은 자존감이 적극적으로 증진됨으로써 공항의 운영성과에 영향을 미친다는 것을 나타낸다. 또한 항행정책, 유지보수, 증진활동이 공항의 운영성과에 영향을 미치고 있다는 것을 확인하였다. 본 연구결과는 자존감이 주어진 공항조직에서 항행시스템 운영자의 자존감을 평가하는 강력한 측정도구의 기초가 될 수 있음을 제안한다.

가속도계 온도안정화 상태에서 고정이득방식 자체정렬의 성능개선 방법에 대한 연구 (A Study on Performance Improvement Method of Fixed-gain Self-alignment on Temperature Stabilizing State of Accelerometers)

  • 이인섭
    • 한국군사과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.435-442
    • /
    • 2016
  • For inertial navigation systems, initial information such as position, velocity and attitude is required for navigation. Self-alignment is the process to determine initial attitude on stationary condition using inertial measurements such as accelerations and angular rates. The accuracy of self-alignment is determined by inertial sensor error. As soon as an inertial navigation system is powered on, the temperature of accelerometer rises rapidly until temperature stabilization. It causes acceleration error which is called temperature stabilizing error of accelerometer. Therefore, temperature stabilizing error degrades the alignment accuracy and also increases alignment time. This paper suggests a method to calculate azimuthal attitude using curve fitting of horizontal control angular rate in fixed-gain self-alignment. It is verified by simulation and experiment that the accuracy is improved and the alignment time is reduced using the proposed method under existence of the temperature stabilizing error.

A Study on the Implementation of RFID-based Autonomous Navigation System for Robotic Cellular Phone(RCP)

  • Choe, Jae-Il;Choi, Jung-Wook;Oh, Dong-Ik;Kim, Seung-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.457-462
    • /
    • 2005
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is currently one of the most attractive technologies for all. However, unless we find a breakthrough to the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technology. Unlike the industrial robot of the past, today's robots require advanced technologies, such as soft computing, human-friendly interface, interaction technique, speech recognition, object recognition, and many others. In this study, we present a new technological concept named RCP(Robotic Cellular Phone), which combines RT & CP, in the vision of opening a new direction to the advance of CP, IT, and RT all together. RCP consists of 3 sub-modules. They are $RCP^{Mobility}$, $RCP^{Interaction}$, and $RCP^{Interaction}$. $RCP^{Mobility}$ is the main focus of this paper. It is an autonomous navigation system that combines RT mobility with CP. Through $RCP^{Mobility}$, we should be able to provide CP with robotic functionalities such as auto-charging and real-world robotic entertainments. Eventually, CP may become a robotic pet to the human being. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While Trajectory Controller is responsible for the wheel-based navigation of RCP, Self-Localization Controller provides localization information of the moving RCP. With the coordinate information acquired from RFID-based self-localization controller, Trajectory Controller refines RCP's movement to achieve better RCP navigations. In this paper, a prototype system we developed for $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results of the RCP navigation.

  • PDF

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • 제6권2호
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

RFID를 이용한 RCP 자율 네비게이션 시스템 구현을 위한 연구 (A Study on the Implementation of RFID-Based Autonomous Navigation System for Robotic Cellular Phone (RCP))

  • 최재일;최정욱;오동익;김승우
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.480-488
    • /
    • 2006
  • Industrial and economical importance of CP(Cellular Phone) is growing rapidly. Combined with IT technology, CP is one of the most attractive technologies of today. However, unless we find a new breakthrough in the technology, its growth may slow down soon. RT(Robot Technology) is considered one of the most promising next generation technologies. Unlike the industrial robot of the past, today's robots require advanced features, such as soft computing, human-friendly interface, interaction technique, speech recognition object recognition, among many others. In this paper, we present a new technological concept named RCP (Robotic Cellular Phone) which integrates RT and CP in the vision of opening a combined advancement of CP, IT, and RT, RCP consists of 3 sub-modules. They are $RCP^{Mobility}$(RCP Mobility System), $RCP^{Interaction}$, and $RCP^{Integration}$. The main focus of this paper is on $RCP^{Mobility}$ which combines an autonomous navigation system of the RT mobility with CP. Through $RCP^{Mobility}$, we are able to provide CP with robotic functions such as auto-charging and real-world robotic entertainment. Ultimately, CP may become a robotic pet to the human beings. $RCP^{Mobility}$ consists of various controllers. Two of the main controllers are trajectory controller and self-localization controller. While the former is responsible for the wheel-based navigation of RCP, the latter provides localization information of the moving RCP With the coordinates acquired from RFID-based self-localization controller, trajectory controller refines RCP's movement to achieve better navigation. In this paper, a prototype of $RCP^{Mobility}$ is presented. We describe overall structure of the system and provide experimental results on the RCP navigation.

엘리베이터를 통한 층간 이동이 가능한 실내 자율주행 로봇용 센서 시스템 (Sensor System for Autonomous Mobile Robot Capable of Floor-to-floor Self-navigation by Taking On/off an Elevator)

  • 이민호;나건우;한승오
    • 센서학회지
    • /
    • 제32권2호
    • /
    • pp.118-123
    • /
    • 2023
  • This study presents sensor system for autonomous mobile robot capable of floor-to-floor self-navigation. The robot was modified using the Turtlebot3 hardware platform and ROS2 (robot operating system 2). The robot utilized the Navigation2 package to estimate and calibrate the moving path acquiring a map with SLAM (simultaneous localization and mapping). For elevator boarding, ultrasonic sensor data and threshold distance are compared to determine whether the elevator door is open. The current floor information of the elevator is determined using image processing results of the ceiling-fixed camera capturing the elevator LCD (liquid crystal display)/LED (light emitting diode). To realize seamless communication at any spot in the building, the LoRa (long-range) communication module was installed on the self-navigating autonomous mobile robot to support the robot in deciding if the elevator door is open, when to get off the elevator, and how to reach at the destination.

Marine Self-organizing VHF Data Link: Operational Principle

  • Sun, Wen-Li;Pang, Fu-Wen;Hong, Tchang-Hee
    • 한국항해학회지
    • /
    • 제22권4호
    • /
    • pp.21-29
    • /
    • 1998
  • The marine self-organizing VHF data link is a digital radio link with self-organizing ability, which exploits the STDMA algorithm and operates in marine VHF channels. It can support the applications of surveillance, situation awareness and communication. It is the core technology of the Universal AIS which is considered as a future surveillance system at sea by the IMO. In this paper, the operational principle of the marine self-organizing VHF data link is introduced. Simultaneously, a new access protocol is proposed to enhance the marine self-organizing VHF data link so as to support point-to-point communication. The point-to-point communication is one of the most important bases to establish dynamic internetworks among computers on the bridges in the future.

  • PDF

유비쿼터스 주차관리 시스템에서 내장 맵 및 센서를 이용한 인프라 독립 네비게이션 시스템 (Infrastructure-independent Navigation System Using Embedded Map and Built-in Sensors in the Ubiquitous Parking Management)

  • 프랭크 엘리호데;이재완
    • 인터넷정보학회논문지
    • /
    • 제13권5호
    • /
    • pp.93-104
    • /
    • 2012
  • 오늘날 사용하고 있는 네비게이션의 신뢰성은 기술적인 발전을 통해 상당히 높아졌다. GPS는 위성기반 위치추적 시스템으로 가장 광범위하게 사용되는 기술이다. 하지만 GPS기반 시스템은 위성이 정확한 뷰를 제공해줄 때에만 위치추적이 정확하다. 본 연구에서는 추적을 위해 내부구조에 의존하지 않는 독자적인 네비게이션을 제안한다. 스마트폰의 내장센서와 내장 맵을 사용하여 정확한 차량 위치추적을 구현한다. 성능평가 결과 정확한 차량의 위치 지원 면에서 우리가 제안한 시스템이 GPS보다 성능이 우수함을 나타내었다.

A Study on Implementation of the Mobile Application of Aid to Navigation Using Location-based Augmented Reality

  • Jeon, Joong-Sung
    • 한국항해항만학회지
    • /
    • 제43권5호
    • /
    • pp.281-288
    • /
    • 2019
  • In this paper, we implemented a mobile application of location-based augmented reality that combines self-sensing technology and various safety information using technological advancements of the smartphone. Vessel navigation is a suitable area for augmented reality because it requires accurate knowledge of the distance and location of destinations, danger zones, AtoN, and adjacent vessels. Current smartphone applications only provide 2D images and location information. Such applications do not include information about the surrounding environment, and as a result, they can only function using their own sensing information and surrounding information into a location-based augmented reality. If you provide a variety of sensor information embedded in the smartphone to 'BadaGO', the implemented application through this study, 'BadaGO' can provide safe navigation information to the user device in real time with a variety of its own formed information. The user has a high practicality and applicability of a small ship that is supplied with safe navigation information in a changing marine environment only by providing information through the application on the smartphone.