• Title/Summary/Keyword: Self-etch

Search Result 108, Processing Time 0.037 seconds

A Study on the Characterisitics of Reactive Ion Etching (Cylindrical Magnetron을 사용한 실리콘의 반응성 이온 건식식각의 특성에 관한 연구)

  • Yeom, Geun-Yeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.4
    • /
    • pp.327-335
    • /
    • 1993
  • Using a RF cylindrical magnetron operated with two electromagnets having a Helmholz configuration, RF magnetron plasma properties and characteristics of reactive ion ething of Si were investigated as a function of applied magnetic field strengths using 3mTorr $CF_4/H_2$ and $CHF_3$. Also, I-V characteristics of Schottky diodes, which were made of silicons etched under different applied magnetic field strengths and gas environments, were measured to investigate the degree of radiation damage during the reactive ion etching. As the magnetic field strent;th increased, ion densities and radical densities of the plasmas were increased linearly, however, the dc self-bias voltages induced on the powered electrode, where the specimen are located, were decreased exponentially. Maximum etch rates, which were 5 times faster than that etched without applied magnetic filed, were obtained using near lOOGauss, and, under these conditions, little or no radiation damages on the etched silicons were found.

  • PDF

THE EFFECT OF Er,Cr:YSGG IRRADIATION ON MICROTENSILE BOND STRENGTH OF COMPOSITE RESIN RESTORATION (Er,Cr:YSGG 조사가 복합레진 수복의 미세인장 결합강도에 미치는 영향)

  • Son, Jeong-Hye;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.134-142
    • /
    • 2010
  • The purpose of this study was to evaluate the effect of Er,Cr:YSGG laser irradiation with hypersensitivity mode on microtensile bond strength of composite resin. Twenty extracted permanent molars were randomly assigned to six groups, according to the irradiation of Er,Cr:YSGG laser, adhesive system (Optibond FL or Clearfil SE bond) and application time of etchant (15 sec or 20 sec). Then composite resin was build up on each conditioned surface. The restored teeth were stored in distilled water at room temperature for 24 h and twelve specimens for each group were prepared. All specimens were subjected to microtensile bond strength and the fracture modes were evaluated. Also, the prepared dentin surface and laser irradiated dentin surface were examined under SEM. The results were as follows: 1. The microtensile bond strength of laser irradiated group was lower than that of no laser irradiated group. 2. Regardless of laser irradiation, the microtensile bond strength of Optibond FL was higher than that of Clearfil SE bond. And the microtensile bond strength of 20 sec etching group was higher than that of 15 sec etching group when using Optibond FL. 3. The SEM image of laser irradiated dentin surface showed prominent peritubular dentin, opened dentinal tubules and no smear layer.

The effect of adhesive thickness on microtensile bond strength to the cavity wall (와동벽에서 접착제의 두께가 미세인장 결합강도에 미치는 영향)

  • Lee, Hwa-Eon;Kim, Hyeon-Cheol;Hur, Bock;Park, Jeong-Kil
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • The purposes of this study were to examine the variability of adhesive thickness on the different site of the cavity wall when used total-etch system without filler and simplified self-etch system with filler and to evaluate the relationship between variable adhesive thickness and microtensile bond strength to the cavity wall. A class I cavity in six human molars was prepared to expose all dentinal walls. Three teeth were bonded with a filled adhesive, $Clearfil^{TM}$ SE bond ana the other three teeth were bonded with unfilled adhesives, $Scotchbond^{TM}$ Multi Purpose. Morphology and thickness of adhesive layer were examined using fluorescence microscope. Bonding agent thickness was measured at three points along the axial cavity wall edge of cavity margin (rim). halfway down each cavity wall (h1f), internal angle of the cavity (ang). After reproducing the adhesive thickness at rim, h1f and ang, micro-tensile bond strength were evaluated. For both bonding agents, adhesive thickness of ang was significantly thicker than that of rim and h1f (P <0.05). As reproduced the adhesive thickness, microtensile bond strength was increased as adhesive thickness was increased in two bonding agents. Adhesive thickness of internal angle of the cavity was significantly thicker than that of the cavity margin and the halfway cavity wall for both bonding agents. Microtensile bond strength of the thick adhesive layer at the internal angle of the cavity was higher than that of the thin adhesive layer at 1,he cavity margin and the halfway cavity in the two bonding systems.

THE EFFECT OF THERMOCYCLING ON THE DURABILITY OF DENTIN ADHESIVE SYSTEMS (열순환이 상아질 접착제의 결합 내구성에 미치는 영향)

  • Moon, Young-Hoon;Kim, Jong-Ryul;Choi, Kyung-Kyu;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.32 no.3
    • /
    • pp.222-235
    • /
    • 2007
  • The objectives of this study was to evaluate the effect of thermocycling on the ${\mu}TBS$ (microtensile bond strength) to dentin with four different adhesive systems to examine the bonding durability. Freshly extracted $3^{rd}$ molar teeth were exposed occlusal dentin surfaces, and randomly distributed into 8 adhesive groups 3-steps total-etching (Scotchbond Multi-Purpose Plus; SM, All Bond-2; AB), 2-steps total-etching (Single Bond; SB, One Step plus; OS), 2-steps self-etching (Clearfil SE Bond; SE, AdheSE AD) and single-step self-etching systems (Promp L-Pop; PL, Xeno III; XE) Each adhesive system in 8 adhesives groups was applied on prepared dentin surface as an instruction and resin composite (Z250) was placed incrementally and light-cured. The bonded specimens were sectioned with low-speed diamond saw to obtain $1\times1mm$ sticks after 24 hours of storage at $37^{\circ}C$ distilled water and proceeded thermocycling at the pre-determined cycles of 0, 1,000 and 2,000. The ${\mu}TBS$ test was carried out with EZ-tester at 1mm/min. The results of bond strength test were statistically analyzed using one-way ANOVA/ Duncan's test at the a < 0.05 confidence level. Also, the fracture mode of debonded surface and the interface were examined under SEM. The results of this study were as follows ; 1. 3-step total etching adhesives showed stable, but bond strength of 2-step adhesives were decreased as thermocycling stress. 2. SE showed the highest bond strength, but single step adhesives (PL, XE) had the lowest value both before and after thermocycling. 3 Most of adhesives showed adhesive failure. The total-etching systems were prone to adhesive failure and the single-step systems were mixed failure after thermocycling. Within limited results of this study, the bond strength of adhesive system was material specific and the bonding durability was affected by the bonding step/ procedure of adhesive Simplified bonding procedures do not necessarily imply improved bonding performance.

THE EFFECT OF CPP-ACP PRE-TREATMENT ON BOND STRENGTH OF A SEALANT (CPP-ACP 적용이 치면열구전색제의 결합강도에 미치는 영향)

  • Kong, Eun-Kyung;Jung, Sang-Hyuk;Mah, Yon-Joo;Ahn, Byung-Duk;Jung, Young-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.37 no.4
    • /
    • pp.445-452
    • /
    • 2010
  • Recently the effect of CPP-ACP on early caries remineralization and prevention has hashbeen extensively researched. However, there has been a lack of research on micro-shear bond strength of a sealant applied on a CPP-ACP treated surface. Therefore, the purpose of this study was to evaluate the effect of CPP-ACP on the micro-shear bond strength of a sealant bonded with 3 different bonding systems. From the sound human 3rd molars, the 150 specimens were prepared and randomly assigned to six groups. Group I: Immersion in artificial saliva for 2 weeks + 35% phosphoric acid Group II: Immersion in artificial saliva for 2 weeks + 35% phosphoric acid + dentin bonding agent Group III: Immersion in artificial saliva for 2 weeks + self-etching adhesive Group IV: CPP-ACP application for 2 weeks + 35% phosphoric acid Group V: CPP-ACP application for 2 weeks + 35% phosphoric acid + dentin bonding agent Group VI: CPP-ACP application for 2 weeks + self-etching adhesive Sealant was applied and the micro-shear bond strength was measured. From the result of this study, it can be assumed that the CPP-ACP pretreatment can weaken the bond strength of a sealant if the enamel surface is conditioned with self-etch adhesive.

Shear bond strength and fracture patterns between Ormocer-based-resin and dentin (Ormocer-Based-Resin의 상아질에 대한 전단결합강도 및 파절 양상에 대한 연구)

  • Ahn, Shi-Hyun;Cho, In-Ho;Lim, Ju-Hwan;Lim, Heon-Song
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.289-299
    • /
    • 2002
  • The bond strength is one of the most important factor in establishing long-term success of esthetic restorative dentistry. So, various restorative materials have been introduced to improve the esthetic and physical properties. Ormocer (organically modified ceramic) was developed as a result of such efforts. This study was performed to compare the shear bond strength of ormocer based adhesive with that of existing dentin adhesive. In this study $Admira^{(R)}$ and $Admira^{(R)}$ bond of the ormocer system are grouped together for ADM, Single $Bond^{(R)}$ which is an one-bottle adhesive and Z-250TM which is hybrid composite resin of BIS-GMA system for SIN, and $Definite^{(R)}$ of ormocer and Etch & $Prime^{(R)}$ 3.0 which is a self etching priming/ bonding agent for ETC. The results of this study were as follows. : (1) In the comparison of shear bond strength according to different adhesive system, shear bond strength was increased in the order of ETC group, SIN group, ADM group. There was no significant difference between ADM group and SIN group. However, there was a significant level of difference between ADM and ETC groups as well as SIN and ETC groups( p<0.05). (2) Examination by a scanning electron microscope showed a well established hybrid layer and resin tag in both ADM group and SIN group, while ETC group showed a minimal formation of the hybrid layer when compared with ADM and SIN groups. From the above results, it may be reasonable to start the clinical application of ormocer system, and it is recommended that ormocer system should be used along with an ormocer based adhesive because ormocer system showed the lower shear bond strength when it used with other existing self etching priming/bonding agent. The self etching priming/bonding agent showed relatively low shear bond strength, and it is considered that the further study should be needed.

In vitro study of microleakage of endodontically treated teeth restored with different adhesive systems and fiber-reinforced posts (다양한 접착시스템을 이용하여 섬유 강화형 포스트로 수복한 치아에서의 미세누출에 관한 연구)

  • Park, Joon-Ho;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: While studies have examined microleakage in endodontically treated teeth restored with posts, microleakage among post and adhesive systems remains a concern. This study compared the sealing properties of 3 adhesively luted post systems. Materials and methods: Thirty-six endodontically treated permanent maxillary central incisors were divided into 3 groups: Zirconia-glass fiber, Quartz-glass fiber, Polyethylene fiber posts. Post space was prepared and each post was adhesively luted with 3 systems. The specimens were separately immersed in freshly prepared 2% methylene blue solution for 1 week. The cleaned specimens were then embedded in autopolymerizing acrylic resin. The root portion of tooth were horizontally sectioned into three pieces (apical, middle, and coronal portions). An occlusal view of each section was digitally photographed with a stereomicroscope. The methylene blue-infiltrated surface for each specimen was measured. Dye penetration was estimated as the ratio of the methylene blue-infiltrated surface to the total dentin surface. Results: No significant differences were found among post types. The variables of middle section and 3-stage adhesive produced significant differences in microleakage between the following post pairs: zirconia-glass fiber versus quartz-glass fiber, zirconia-glass fiber versus polyethylene fiber, and quartz-glass fiber versus polyethylene fiber (P<.05). There were significant differences between the apical and coronal sections of each post type, and between apical versus middle sections of quarze-glass fiber and polyethylene fiber posts (P<.05). Conclusion: No significant differences were found among post types. The 3-stage adhesive produced significant differences in microleakage between the following post pairs.

Influence of additional etching on shear bond strength of self-etching adhesive system to enamel (부가적인 산부식이 자가산부식 접착제의 법랑질에 대한 전단결합강도에 미치는 영향)

  • Yoo Sun-Jin;Kim Young-Kyung;Park Jeong-Won;Jin Myoung-Uk;Kim Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.4
    • /
    • pp.263-268
    • /
    • 2006
  • Recently, self-etching adhesive system has been introduced to simplify the clinical bonding proce- dures. It is less acidic compared to the phosphoric acid, thus there is doubt whether this system has enough bond strength to enamel. The purpose of this study was to investigate the influence of additional etching on the adhesion of resin composite to enamel. Ninety extracted bovine permanent anterior teeth were used. The labial surfaces of the crown were ground with 600-grit abrasive paper under wet condition. The teeth were randomly divided into six groups of 15 teeth each. Clearfil SE $Bond^{\circledR},\;Adper^{TM}$ Prompt L-Pop and Tyrian $SPE^{TM}$ were used as self-etching primers. Each self-etching primers were applied in both enamel specimens with and without additional etching. For additional etching groups, enamel surface was pretreated with 32% phosphoric acid (UNI-ETCH, Bisco, Inc., Schaumburg, IL. USA). Hybrid resin composite Clearfil AP-X, (Kuraray Co., Ltd., Osaka, Japan) was packed into the mold and light-cured for 40 seconds. Twenty-four hours after storage, the specimens were tested in shear bond strength. The data for each group were subjected to independent t - test at p < 0.01 to make comparisons among the groups. In Clearfil SE $Bond^{\circledR}$, shear bond strength of additional etching group was higher than no additional etching group (p < 0.01). In $Adper^{TM}$ Prompt L-Pop and Tyrian SPE, there were no significant difference between additional etching and non-etching groups (p > 0.01). In conclusion, self-etching adhesive system with weak acid seems to have higher bond strength to enamel with additional etching, while self-etching adhesive system with strong acid seems not.

Fabrication of Optically Active Nanostructures for Nanoimprinting

  • Jang, Suk-Jin;Cho, Eun-Byurl;Park, Ji-Yun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.393-393
    • /
    • 2012
  • Optically active nanostructures such as subwavelength moth-eye antireflective structures or surface enhanced Raman spectroscopy (SERS) active structures have been demonstrated to provide the effective suppression of unwanted reflections as in subwavelength structure (SWS) or effective enhancement of selective signals as in SERS. While various nanopatterning techniques such as photolithography, electron-beam lithography, wafer level nanoimprinting lithography, and interference lithography can be employed to fabricate these nanostructures, roll-to-roll (R2R) nanoimprinting is gaining interests due to its low cost, continuous, and scalable process. R2R nanoimprinting requires a master to produce a stamp that can be wrapped around a quartz roller for repeated nanoimprinting process. Among many possibilities, two different types of mask can be employed to fabricate optically active nanostructures. One is self-assembled Au nanoparticles on Si substrate by depositing Au film with sputtering followed by annealing process. The other is monolayer silica particles dissolved in ethanol spread on the wafer by spin-coating method. The process is optimized by considering the density of Au and silica nano particles, depth and shape of the patterns. The depth of the pattern can be controlled with dry etch process using reactive ion etching (RIE) with the mixture of SF6 and CHF3. The resultant nanostructures are characterized for their reflectance using UV-Vis-NIR spectrophotometer (Agilent technology, Cary 5000) and for surface morphology using scanning electron microscope (SEM, JEOL JSM-7100F). Once optimized, these optically active nanostructures can be used to replicate with roll-to-roll process or soft lithography for various applications including displays, solar cells, and biosensors.

  • PDF

A Surface Etching for Synthetic Diamonds with Nano-Thick Ni Films and Low Temperature Annealing

  • Song, Jeongho;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.4
    • /
    • pp.279-283
    • /
    • 2015
  • Ni (100 nm thick) was deposited onto synthesized diamonds to fabricate etched diamonds. Next, those diamonds were annealed at varying temperatures ($400{\sim}1200^{\circ}C$) for 30 minutes and then immersed in 30 wt% $HNO_3$ to remove the Ni layers. The etched properties of the diamonds were examined with FE-SEM, micro-Raman, and VSM. The FE-SEM results showed that the Ni agglomerated at a low annealing temperature (${\sim}400^{\circ}C$), and self-aligned hemisphere dots formed at an annealing temperature of $800^{\circ}C$. Those dots became smaller with a bimodal distribution as the annealing temperature increased. After stripping the Ni layers, etch pits and trigons formed with annealing temperatures above $400^{\circ}C$ on the surface of the diamonds. However, surface graphite layers existed above $1000^{\circ}C$. The B-H loop results showed that the coercivity of the samples increased to 320 Oe (from 37 Oe) when the annealing temperature increased to $600^{\circ}C$ and then, decreased to 150 Oe with elevated annealing temperatures. This result indicates that the coercivity was affected by magnetic domain pinning at temperatures below $600^{\circ}C$ and single domain behavior at elevated temperatures above $800^{\circ}C$ consistent with the microstructure results. Thus, the results of this study show that the surface of diamonds can be etched.