• 제목/요약/키워드: Self-Noise Reduction

검색결과 51건 처리시간 0.025초

초저주파 대역 수중 자체소음 저감에 관한 실험 연구 (An Experiment on Reduction of Infrasonic Underwater Self-Noise)

  • 이성욱;이용국;김성렬
    • 한국음향학회지
    • /
    • 제30권1호
    • /
    • pp.17-21
    • /
    • 2011
  • 수중에서 음향신호를 측정할 때에 청음기 주위에서의 유동에 의해 발생하는 초저주파 대역 자체소음을 저감시키기 위해 청음기 주위에 다공성 발포재를 씌우는 기법의 효과를 해상 실험을 통해 고찰하였다. 두께가 다른 10 ppi 폴리우레탄 발포재를 이용하여 실험한 결과, 2-10 Hz 대역에서 발포재의 두께가 1 cm일 때에는 최대 20 dB 그리고 발포재의 두께가 3 cm인 경우에는 최대 28 dB의 자체소음 저감 효과가 있음을 확인하였다.

소음 차단링을 이용한 구조물의 음향진동 차단 특성 연구 (Acoustic and Vibration Isolation Characteristics Using SNORE Ring in the Structure)

  • 이종길;구정모;조치영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.336-337
    • /
    • 2010
  • In the underwater veicle self-noise from the propeller reduces the sensor sensitivity. To increase the sensor sensitivity SNORE ring(Self-noise reduction ring) has been used. In this paper to calculate the effectiveness of the SNORE ring and de-coupeler numerical simulation is conducted. Based on the simulation results CRP(Carbon reinforced plastic)and SNORE ring reduced noise and vibration.

  • PDF

소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석 (The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer)

  • 신구균;서영수;강명환;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법 (Prediction Method for Trailing-edge Serrated Wind Turbine Noise)

  • 한동연;최지훈;이수갑
    • 신재생에너지
    • /
    • 제16권2호
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.

고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가 (Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage)

  • 한기호;조영호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권4호
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석 (The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer)

  • 신구균;서영수;강명환;전재진
    • 한국소음진동공학회논문집
    • /
    • 제23권1호
    • /
    • pp.56-64
    • /
    • 2013
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, materials of acoustic window and characteristics of damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result, these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction

마이크로폰 어레이 측정에서의 도플러 효과와 자체소음 제거에 관한 실험적 연구 (Elimination of Self Noise & Doppler Effects from the Microphone Array Measurement)

  • 이욱;박성;김재무;최종수
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.677-682
    • /
    • 2006
  • In the case of aeroacoustic test in windtunnel, measurement accuracy is reduced by not only Doppler effects but also by the microphone self noise due to airflow and high turbulence in the wall boundary layer. Microphone array measurements can be easily utilized for the solutions of these problems. In this paper, geometrical optics approach and diagonal term elimination of cross spectral matrix was introduced to the de-dopplerization and self noise reduction methods for the microphone array measurement. For the validation, beamforming tests for sinusoidal point source were performed in the closed type test section of windtunnel, and their performances of beam width and sidelobe rejection were significantly improved.

마이크로폰 어레이 측정에서의 도플러 효과와 자체소음 제거에 관한 실험적 연구 (Elimination of Self Noise & Doppler Effects from the Microphone Array Measurement)

  • 이욱;박성;최종수;김재무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.822-825
    • /
    • 2005
  • In the case of aeroacoustic test in windtunnel, measurement accuracy is reduced by not only Doppler effects but also by the microphone self noise due to airflow and high turbulence in the wall boundary layer. Microphone array measurements can be easily utilized for the solutions of these problems. In this paper, geometrical optics approach and diagonal term elimination of cross spectral matrix was introduced to the de-dopplerization and self noise reduction methods for the microphone array measurement. For the validation, beamforming tests for sinusoidal point source were performed in the closed type test section of windtunnel, and their performances of beam width and sidelobe rejection were significantly improved.

  • PDF

자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구 (A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller)

  • 신준;이태연;김흥섭;조성오;방승현;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1993년도 춘계학술대회논문집; 한국과학연구소, 21 May 1993
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF