• Title/Summary/Keyword: Self-Noise Reduction

Search Result 51, Processing Time 0.042 seconds

An Experiment on Reduction of Infrasonic Underwater Self-Noise (초저주파 대역 수중 자체소음 저감에 관한 실험 연구)

  • Lee, Seong-Wook;Lee, Yong-Kuk;Kim, Seong-Ryul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • The effects of screening hydrophones with open-cell foams for reduction of the infrasonic self-noise induced by the flow around hydrophones are investigated by at-sea experiment. Test results of the 10 ppi polyurethane open-cell foams with different thickness show that the foams of 1 cm and 3 cm thickness reduce the flow-induced self-noises up to 20 dB and 28 dB at the frequency band of 2-10 Hz, respectively.

Acoustic and Vibration Isolation Characteristics Using SNORE Ring in the Structure (소음 차단링을 이용한 구조물의 음향진동 차단 특성 연구)

  • Lee, Jong-Kil;Ku, Jeong-Mo;Jo, Chee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.336-337
    • /
    • 2010
  • In the underwater veicle self-noise from the propeller reduces the sensor sensitivity. To increase the sensor sensitivity SNORE ring(Self-noise reduction ring) has been used. In this paper to calculate the effectiveness of the SNORE ring and de-coupeler numerical simulation is conducted. Based on the simulation results CRP(Carbon reinforced plastic)and SNORE ring reduced noise and vibration.

  • PDF

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.568-574
    • /
    • 2012
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, material and damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction.

  • PDF

Prediction Method for Trailing-edge Serrated Wind Turbine Noise (풍력발전기 톱니형 뒷전 블레이드 소음 예측 기법)

  • Han, Dongyeon;Choi, Jihoon;Lee, Soogab
    • New & Renewable Energy
    • /
    • v.16 no.2
    • /
    • pp.1-13
    • /
    • 2020
  • The reduction of noise from wind turbines has been studied using various methods. Some examples include controlling wind turbine blades, designing low-noise-emitting wind turbine blades, and using trailing-edge serrations. Among these methods, serration is considered an effective noise reduction method. Various studies have aimed to understand the effects of trailing-edge serration parameters. Most studies, however, have focused on fixed-wing concepts, and few have analyzed noise reduction or developed a prediction method for rotor-type blades. Herein, a noise prediction method, composed of two noise prediction methods for a wind turbine with trailing-edge serrations, is proposed. From the flow information obtained by an in-house program (WINFAS), the noise from non-serrated blades is calculated by turbulent ingestion noise and airfoil self-noise prediction methods. The degree of noise reduction caused by the trailing-edge serrations is predicted in the frequency domain by Lyu's method. The amount of noise reduction is subtracted from the predicted result of the non-serrated blade and the total reduction of the noise from the rotor blades is calculated.

Electrical Noise Reduction and Stiffness Increase with Self Force-Balancing Effect in a High-Resolution Capacitive Microaccelerometer using Branched Finger Electrodes with High-Amplitude Sense Voltage (고감지전압 및 가지전극을 이용한 고정도 정전용량형 미소가속도계의 전기적 잡음 감소 및 자율 균형력 발생에 의한 강성 증가)

  • Han, Gi-Ho;Jo, Yeong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.4
    • /
    • pp.169-174
    • /
    • 2002
  • This paper presents a high-resolution capactive microaccelerometer using branched finger electrodes with high-amplitude sense voltage. From the fabricated microacceleromcter, the total noise is obtained as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, while the conventional microaccelerometers have shown the noire level of 25~800 $\mu\textrm{g}$/√Hz. We reduce the mechanical noise level of the microaccelerometer by increasing the proof-class based on deep RIE process of an SOI wafer. We reduce the electrical noise level by increasing the amplitude of AC sense voltage. The nonlinearity problem caused by the high-amplitude sense volage has been solved by a new electrode design of branched finger type, resulting in self force-balancing effects for the enhanced linearity and bandwidth. The fabricated microaccelerometer shows the electrical noise of 2.4 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is an order of magnitude reduction of the electrical noise of 24.3 $\mu\textrm{g}$/√Hz measured at 0.9V. For the sense voltage higher than 2V, the electrical noise of the microaccelerometer is lower than the voltage-independent mechanical noise of 11 $\mu\textrm{g}$/√Hz. Total noise, composed of the electrical noise and the mechanical noire, has been measured as 9 $\mu\textrm{g}$/√Hz at the sense voltage of 16.5V, which is 31% of the total noise of 28.6 $\mu\textrm{g}$/√Hz at the sense voltage 0.9V. The self force-balancing effect in the blanched finger electrodes increases the stiffness of the microaccelerometer from 1.1N/m to 1.61N/m as the sense voltage increases from 0V to 17.8V, thereby generating additional stiffness at the rate of 0.0016$\pm$0.0008 N/m/V$^2$.

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-Kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, materials of acoustic window and characteristics of damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result, these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction

Elimination of Self Noise & Doppler Effects from the Microphone Array Measurement (마이크로폰 어레이 측정에서의 도플러 효과와 자체소음 제거에 관한 실험적 연구)

  • Rhee, Wook;Park, Sung;Kim, Jai-Moo;Choi, Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.7 s.112
    • /
    • pp.677-682
    • /
    • 2006
  • In the case of aeroacoustic test in windtunnel, measurement accuracy is reduced by not only Doppler effects but also by the microphone self noise due to airflow and high turbulence in the wall boundary layer. Microphone array measurements can be easily utilized for the solutions of these problems. In this paper, geometrical optics approach and diagonal term elimination of cross spectral matrix was introduced to the de-dopplerization and self noise reduction methods for the microphone array measurement. For the validation, beamforming tests for sinusoidal point source were performed in the closed type test section of windtunnel, and their performances of beam width and sidelobe rejection were significantly improved.

Elimination of Self Noise & Doppler Effects from the Microphone Array Measurement (마이크로폰 어레이 측정에서의 도플러 효과와 자체소음 제거에 관한 실험적 연구)

  • Rhee, Wook;Park, Sung;Choi, Jong-Soo;Kim, Jai-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.822-825
    • /
    • 2005
  • In the case of aeroacoustic test in windtunnel, measurement accuracy is reduced by not only Doppler effects but also by the microphone self noise due to airflow and high turbulence in the wall boundary layer. Microphone array measurements can be easily utilized for the solutions of these problems. In this paper, geometrical optics approach and diagonal term elimination of cross spectral matrix was introduced to the de-dopplerization and self noise reduction methods for the microphone array measurement. For the validation, beamforming tests for sinusoidal point source were performed in the closed type test section of windtunnel, and their performances of beam width and sidelobe rejection were significantly improved.

  • PDF

A Study on the Adaptive Active Noise Control Using the Self-tuning feedback controller (자기동조 피이드백 제어기를 이용한 적응 능동소음제어에 관한 연구)

  • Shin, Joon;Lee, Tae-Yeon;Kim, Heung-Seob;Jo, Seong-Oh;Bang, Seung-Hyun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.04a
    • /
    • pp.140-146
    • /
    • 1993
  • Active noise control uses the intentional superposition of acoustic waves to create a destructive interference pattern such that a reduction of the unwanted sound occurs. In active noise control system the choice of a control structure and design of the controller are the main issues of concern. In real acoustic fields there are a vast number of noise sources with time-varying nature and the characteristics of transducers and the geometric set-up of control system are subject to change. Accordingly the control system should be designed to adapt such circumstances so that required level of performance is maintained. In this paper, the adaptive control algorithm for self-tuning adaptive controller is presented for the application in active noise control system. Self-tuning is a direct integration of identification and controller design algorithm in such a manner that the two processes proceed sequentially. The least mean square algorithm was used for the identification schemes and adaptive weighted minimum variance control algorithm was applied for self-tuning controller. Computer simulation results for self-tuning feedback controller are presented. And simulation results was shown to be useful for the situation in which the periodic noise sources act on the acoustic field.

  • PDF