• Title/Summary/Keyword: Self-Assembled Monolayer

Search Result 260, Processing Time 0.026 seconds

Evaluation of Antibody Immobilization Methods for Detection of Salmonella using Impedimetric Biosensor (살모넬라균 검출을 위한 임피던스 바이오센서의 항체 고정화 방법 평가)

  • Kim, Gi-Young;Moon, Ji-Hea;Om, Ae-Son;Yang, Gil-Mo;Moh, Chang-Yeon;Kang, Suk-Won;Cho, Han-Keun
    • Journal of Biosystems Engineering
    • /
    • v.34 no.4
    • /
    • pp.254-259
    • /
    • 2009
  • Conventional methods for pathogen detection and identification are labor-intensive and take several days to complete. Recently developed biosensors have shown potential for the rapid detection of foodborne pathogens. In this study, an impedimetric biosensor was developed for rapid detection of Salmonella typhimurium. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on either avidin-biotin binding or self assembled monolayer (SAM) on the surface of the IME to form an active sensing layer. To evaluate effect of antibody immobilization methods on sensitivity of the sensor, detection limit of the biosensor was analyzed with Salmonella samples innoculated in phosphate buffered saline (PBS) or food extract. The impedimetric biosensor based on SAM immobilization method produced better detection limit. The biosensor could detect 107 CFU/mL of Salmonella in pork meat extract. This method may provide a simple, rapid, and sensitive method to detect foodborne pathogens.

Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process (미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작)

  • Kim K.Y.;Jo Jeong-Dai;Kim D.S.;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF

pH Measurements with a Microcantilever Array-Based Biosensor System

  • Hur, Shin;Jung, Young-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • In this paper, we present a pH measurement method that uses a microcantilever-array-based biosensor system. It is composed of microcantilever array, liquid cell, micro syringe pump, laser diode array, position sensitive detector, data acquisition device, and data processing software. Four microcantilevers are functionalized with pH-sensitive MHA(mercaptohexadecanoic acid) as a probe, while three microcantilevers are functionalized with HDT(hexadecane thiol) as reference. We prepare PBS(phosphate buffered saline) solutions of different pH and inject them into the liquid cell with a predefined volumetric speed at regular time intervals. The functionalized mircocantilevers in the liquid cell deflect as a self-assembled monolayer on the microcantilever binds with probe molecules in the solution. The difference in deflection between the MHA-covered probe microcantilever and the HDT-covered reference microcantilever was used to compensate for thermal drift. The deflection difference clearly increases with increasing pH in the solution. It was shown that when the pH values of the PBS solutions are high, there were large variations in the deflection of microcantilevers, whereas there were small variations for low pH value. The experimental results show that the microcantilever array functionalized with MHA and HDT can detect pH value with good repeatability.

Synthesis of Magnetic Nanoparticles of Fe3O4 and CoFe2O4 and Their Surface Modification by Surfactant Adsorption

  • Zhao, Shi Yong;Lee, Don-Geun;Kim, Chang-Woo;Cha, Hyun-Gil;Kim, Young-Hwan;Kang, Young-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.237-242
    • /
    • 2006
  • $Fe_3O_4$ and $CoFe_2O_4$ magnetic nanoparticles have been synthesized successfully in aqueous solution and coated with oleic acid. The solid and organic solution of the synthesized nanoparticles was obtained. Self-assembled monolayer films were formed using organic solution of these nanoparticles. The crystal sizes determined by Debye-Scherre equation with XRD data were found close to the particle sizes calculated from TEM images, and this indicates that the synthesized particles are nanocrystalline. Especially, EDS, ED, FT-IR, TGA/DTA and DSC were used to characterize the nanoparticles and the oleic acid adsorption, and it was found that oleic acid molecule on the $Fe_3O_4$ nanoparticle is a bilayer adsorption, while that on $CoFe_2O_4$ nanoparticle is single layer adsorption. The superparamagnetic behavior of the nanoparticles was documented by the hysteresis loop measured at 300 K.

Underwater Stability of Surface Chemically Modified Superhydrophobic W18O49 Nanowire Arrays

  • Lee, Junghan;Yong, Kijung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.601-601
    • /
    • 2013
  • Superhydrophobic W18O49 nanowire (NW) arrays were synthesizedusing a thermal evaporation and surface chemistry modification methods by self-assembled monolayer (SAM). As-prepared non-wetting W18O49 NWs surface shows water contact angle of $163.2^{\circ}$ and has reliable stability in underwater conditions. Hence the superhydrophobic W18O49 NWs surface exhibits silvery surface by total reflection of water layer and air interlayer. The stability analysus of underwater superhydrophobicity of W18O49 NWs arrays was conducted by changing hydrostatic pressure and surface energy of W18O49 NWs arrays. The stability of superhydrophobicity in underwater conditions decreased exponentially as hydrostatic pressure applied to the substrates increased3. In addition, as surface energy decreased, the underwater stability of superhydrophobic surface increased sharply. Specifically, sueprhydrophobic stability increased exponentially as surface energy of W18O49 NWs arrays was decreased. Based on these results, the models for explaining tendencies of superhydrophobic stability underwater resulting from hydrostatic pressure and surface energy were designed. The combination of fugacity and Laplace pressure explained this exponential decay of stability according to hydrostatic pressure and surface energy. This study on fabrication and modeling of underwater stability of superhydrophobic W18O49 NW arrays will help in designing highly stable superhydrophobic surfaces and broadening fields of superhydrophobic applications even submerged underwater.

  • PDF

High density line patterns fabricated by thermal imprint (Thermal imprint를 이용한 고밀도 line패턴 형성방법)

  • Lee, Sang-Moon;Kwak, Jung-Bok;Lee, Hwan-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.270-270
    • /
    • 2008
  • We present details of experimental results in the fabrication of high density line patterns, using imprint technique that can provide a simple and comparatively cost-effective manufacturing means. Barrier array structures for display or interconnects for semiconductor applications were the aims of this study. For pattern fabrication, a polymer layer (Ajinomoto GX-13 dielectric film) with a thickness of 38um that can act as either an insulating or a dielectric layer was laminated on a substrate. Fine tracks were then formed using a patterned stamp under isostatic pressure. The line width was ranged between 10 to 60 mm. A self-assembled monolayer (SAM) of fluorinated alkylchlorosilane [$CF_3(CF_2)5(CH_2)2SiCl_3$] as an anti-sticking layer was coated on the surface of the stamp prior to thermal imprint to improve the de-molding characteristic.

  • PDF

Identification of Dinitrotoluene Selective Peptides by Phage Display Cloning

  • Jang, Hyeon-Jun;Na, Jung-Hyun;Jin, Bong-Suk;Lee, Won-Kyu;Lee, Woong-Hee;Jung, Hyun-Jin;Kim, Seok-Chan;Lim, Si-Hyung;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3703-3706
    • /
    • 2010
  • Biomolecules specific to explosives can be exploited as chemical sensors. Peptides specific to immobilized dinitrotoluene (DNT) were identified using a phage display library. A derivative of DNT that contained an extended amine group, 4-(2,4-dinitrophenyl)butan-1-amine, was synthesized and immobilized using a self-assembled monolayer surface on gold. Filamentous M13 phages displaying random sequences of 12-mer peptides specific to the immobilized DNT-derivate were isolated from the M13 phage library by biopanning. A common peptide sequence was identified from the isolated phages and the synthesized peptides showed selective binding to DNT. When the peptide was immobilized on a quartz crystal microbalance (QCM) chip, it showed a binding signal to DNT, while toluene barely showed significant binding to the QCM chip. These results demonstrate that peptides screened by biopanning against immobilized DNT can be useful for quick and accurate detection of DNT.

Band Gap Energy of SrTiO3Thin Film Prepared by the Liquid Phase Deposition Method

  • Gao, Yanfeng;Masuda, Yoshitake;Koumoto, Kunihito
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.3
    • /
    • pp.213-218
    • /
    • 2003
  • Band gap energies of SrTiO$_3$(STO) thin film on glass substrates were studied in terms of annealing temperature. The STO thin film was fabricated by our newly developed method based on the combination of the Self-Assembled Monolayer(SAM) technique and the Liquid Phase Deposition(LPD) method. The as-deposited film demonstrated a direct band gap energy of about 3.65 eV, which further increased to 3.73 eV and 3.78 eV by annealing at 40$0^{\circ}C$ and 50$0^{\circ}C$, respectively. The band gap energy saturated at about 3.70 eV for the crystallized film which was obtained by annealing at 600-$700^{\circ}C$. The relatively large band gap energies of our crystallized films were due to the presence of minor amorphous phase, grain boundaries and oxygen vacancies generated by annealing in air.

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation (소수성 처리 방법에 따른 플라즈마 전해 산화 처리된 마그네슘 합금의 내식성)

  • Joo, Jaehoon;Kim, Donghyun;Jeong, Chanyoung;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.2
    • /
    • pp.96-102
    • /
    • 2019
  • Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.

Growth behavior of YBCO films on STO substrates with ZnO nanorods

  • Oh, Se-Kweon;Lee, Cho-Yeon;Jang, Gun-Eik;Kim, Kyoung-Won;Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.4
    • /
    • pp.16-19
    • /
    • 2009
  • The influence of nanorods grown on substrate prior to YBCO deposition has been investigated. We studied the microstructures and characteristic of $YBa_2Cu_3O_{7-\delta}$ films fabricated on $SrTiO_3$ (100) substrates with ZnO nanorods as one of the possible pinning centers. The growth density of ZnO nanorods was modulated through Au nanoparticles synthesized on top of the STO(100) substrates with self assembled monolayer. The density of Au nanoparticles is approximately $240{\sim}260\;{\mu}m^{-2}$ with diameters of 41~49 nm. ZnO nanorods were grown on Au nanoparticles by hot-walled PLD with Au nanoparticles. Typical size of ZnO nanorod was around 179 nm in diameter and $2{\sim}6\;{\mu}m$ in length respectively. The ZnO nanorods have apparently randomly aligned and exhibit single-crystal nature along (0002) growth direction. Our preliminary results indicate that YBCO film deposited directly on STO substrate shows the c-axis orientation while YBCO films with ZnO nanorods exhibit any mixed phases without any typical crystal orientation.