DOI QR코드

DOI QR Code

Band Gap Energy of SrTiO3Thin Film Prepared by the Liquid Phase Deposition Method

  • Gao, Yanfeng (Department of Applied Chemistry, Graduate School of Engineering, Nagoya University) ;
  • Masuda, Yoshitake (Department of Applied Chemistry, Graduate School of Engineering, Nagoya University) ;
  • Koumoto, Kunihito (Department of Applied Chemistry, Graduate School of Engineering, Nagoya University)
  • Published : 2003.03.01

Abstract

Band gap energies of SrTiO$_3$(STO) thin film on glass substrates were studied in terms of annealing temperature. The STO thin film was fabricated by our newly developed method based on the combination of the Self-Assembled Monolayer(SAM) technique and the Liquid Phase Deposition(LPD) method. The as-deposited film demonstrated a direct band gap energy of about 3.65 eV, which further increased to 3.73 eV and 3.78 eV by annealing at 40$0^{\circ}C$ and 50$0^{\circ}C$, respectively. The band gap energy saturated at about 3.70 eV for the crystallized film which was obtained by annealing at 600-$700^{\circ}C$. The relatively large band gap energies of our crystallized films were due to the presence of minor amorphous phase, grain boundaries and oxygen vacancies generated by annealing in air.

Keywords

References

  1. A. F. Tasch, Jr. and L. H. Parker, 'Memory Cell and Tech-nology Issues for 64- and 256-Mbit One-transistor Cell MOSD DRAMs,' Proc. IEEE, 77 374-88 (1989) https://doi.org/10.1109/5.24125
  2. P. C. Joshi and S. B. Krupanidhi, 'Structural and Electrical Characteristics of $SrTiO_3$ Thin Films for Dynamic RandomAccess Memory Applications,' J. Appl. Phys.,73 7627-34 (1993) https://doi.org/10.1063/1.353960
  3. M. N. Kamalasanan, N. D. Kumar, and S. Chandra, 'Struc-tural, Optical, and Dielectric Properties of Sol-gel Derived $SrTiO_3$ Thin Films,' J. AppI. Phys., 74 679-86 (1993) https://doi.org/10.1063/1.355230
  4. T. Kunihisa, S. Yamamoto, M. Nishijima, T. Yokohama, M Nishitsuji, K. Nishii, and O. Ishikawa, 'Low Power Dissi-pation Single-supply MMIC Power Amplifier for 5.8 GHz Electronic Toll Collection System,' IEICE Trans. EIectron., E82-C 1921-27 (1999)
  5. K. Morito, H. Wakabayashi, T. Suzuki, and M. Fujimoto, 'Fabrication Technology of High-dielectric $SrTiO_3$ Thin Film Capacitors for Microwave Circuits,' J. Ceram. Soc. Jpn., 110 408-15 (2002) https://doi.org/10.2109/jcersj.110.408
  6. H. Funakubo, Y. Takeshima, D. Nagano, A. Saiki, K. Shi-nozaki, and N. Mizutani, 'Deposition Conditions of $SrTiO_3$ Thin Films on Various Substrates by CVD and their Dielec-the Properties,' Thin SoIid Films, 334 71-6 (1998) https://doi.org/10.1016/S0040-6090(98)01119-5
  7. K. Frohlich, D. Machajdik, A. Rosova, F. Weiss, B. Bochu, J. P. Senateur, and I. Vavra, 'Growth of $SrTiO_3$ Thin Epi-taxial Films by Aerosol MOCVD,' Thin Solid Films, 260 187-91 (1995) https://doi.org/10.1016/0040-6090(94)06507-1
  8. M. Vehkamaki, T. Hanninen, M. Ritala, M. Leskela, T.Sajavaara, and J. Keinonen, 'Atomic Layer Deposition of $SrTiO_3$ Thin Films from a Novel Strontium Precursor-Strontium-bis(tri-isopropyl cyclopentadienyl),' Chem. Vapor Deposition, 7 75-80 (2001) https://doi.org/10.1002/1521-3862(200103)7:2<75::AID-CVDE75>3.0.CO;2-B
  9. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, and N. Mizutani, 'Band-gap Energies of Sol-gel-derived $SrTiO_3$ Thin Films,' AppI. Phys. Lett., 79 3767-69 (2001) https://doi.org/10.1063/1.1423788
  10. M. Yoshimura, W. L. Suchanek, T. Watanabe, and B. Sakurai, 'In Situ Fabrication of $SrTiO_3-BaTiO_3$ Layered Thin Films by Hydrothermal-electrochemical Technique,' J. Euro. Ceram. Soc., 19 1353-59 (1999) https://doi.org/10.1016/S0955-2219(98)00433-6
  11. M. K. Lee, K. W. Tung, C. C. Cheng, H. C. Liao, and C. M. Shih, 'Deposition of Barium Titanate Films on Silicon by Barium Fluorotitanate Powder,' J. Phys. Chem. B, 106 4963-66 (2002) https://doi.org/10.1021/jp0134401
  12. Y. Gao, Y. Masuda, T. Yonezawa, and K. Koumoto, 'Site-selective Deposition and Micropatterning of $SrTiO_3$ Thin Film on Self-assembled Monolayers by the Liquid Phase Deposition Method,' Chem. Mater., 14 [12] 5006-14 (2002) https://doi.org/10.1021/cm020358p
  13. Y. Gao, Y. Masuda, T. Yonezawa, and K. Koumoto, 'Prepa-ration of $SrTiO_3$ Thin Film by the Liquid Phase Deposition Method,' Mater. Sci. and Eng. B., in press
  14. L.-J. Meng and M. P. Dos Santos, 'Investigation of Tita-nium Oxide Films Deposited by D. C. Reactive Magnetron Sputtering in Different Sputtering Pressures,' Thin Solid Films, 226 22-9 (1993) https://doi.org/10.1016/0040-6090(93)90200-9
  15. P. Y. Yu and M. Cardona, Fundamentals of Semiconduc-tors, p.343 (Springer, Berlin 1996)
  16. G. A. Barbosa, R. S. Katiyar, and P. S. Porto, 'Optical Prop-erties of $SrTiO_3$ at High Temperatures,' J. Opt. Soc. Am., 68 610-14 (1978) https://doi.org/10.1364/JOSA.68.000610
  17. S. Zollner, A. A. Demkov, R. Liu, P. L. Fejes, R. B. Gregory, P. Alluri, J. A. Curless, Z. Yu, J. Ramdani, R. Droopad, T. E. Tiwald, J. N. Hilfiker, and J. A. Woollam, 'Optical Prop-ei-ties of Bulk and Thin-film $SrTiO_3$ on Si and Pt,' J. Vac. Sci. Technol. B, 18 2242-54 (2000) https://doi.org/10.1116/1.1303741
  18. K. V. Benthem, C. Elsasser, and R. H. French, 'Bulk Elec-tronic Structure of $SrTiO_3$ : Experiment and Theory,' J. Appl. Phys., 90 6156-64 (2001) https://doi.org/10.1063/1.1415766
  19. F. Tcheliebou, H. S. Ryu, C. K. Hong, W. S. Park, and S. Baik, 'On the Microstructure and Optical Properties of $Ba_{0.5}Sr_{0.5}TiO_3$ Films,' Thin Solid Films, 305 30-4 (1997) https://doi.org/10.1016/S0040-6090(97)00072-2
  20. H. W. Gandy, 'Optical Transmission of Heat-treated Stron-tium Titanate,' Phys. Rev., 113 795-800 (1959) https://doi.org/10.1103/PhysRev.113.795
  21. J. C. Tauc, Amorphous and Liquid Semiconductor, p.159 (Plenum, New York, 1974)

Cited by

  1. Bioinspired Ceramic Thin Film Processing: Present Status and Future Perspectives vol.5, pp.5, 2005, https://doi.org/10.1021/cg049624x
  2. Optoelectrical Properties of Ferroelectric PC/Ceramic Composites vol.22, pp.3, 2009, https://doi.org/10.1177/0892705708096548
  3. Electrical and optical characterization of PMMA doped with Y0.0025Si0.025Ba0.9725 (Ti(0.9)Sn0.1)O3 ceramic vol.28, pp.4, 2010, https://doi.org/10.1007/s10118-010-9086-x
  4. Amorphous Strontium Titanate Film as Gate Dielectric for Higher Performance and Low Voltage Operation of Transparent and Flexible Organic Field Effect Transistor vol.8, pp.16, 2016, https://doi.org/10.1021/acsami.6b02847
  5. Postdeposition annealing on RF-sputtered SrTiO3 thin films vol.35, pp.2, 2017, https://doi.org/10.1116/1.4973970
  6. The Highly Active Photocatalyst of Silver Orthophosphate under Visible Light Irradiation for Phenol Oxidation vol.896, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.896.141
  7. Hydrothermal Synthesis and Photocatalytic Properties of BiPO4/Ag3PO4 Heterostructure for Phenol Decomposition vol.911, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.911.92
  8. Synthesis of Bi2O3/Ag3Po4 Composites and their Photocatalytic Activities under Visible Light Irradiation vol.1112, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1112.163
  9. Structural and optical properties of Al/ZnO thin films deposited by radio frequency sputtering vol.3, pp.9, 2016, https://doi.org/10.1088/2053-1591/3/9/096401
  10. Structural and optical properties of as-deposited and annealed SrTiO3 films prepared by laser ablation vol.3, pp.10, 2006, https://doi.org/10.1002/pssc.200672127
  11. Liquid Phase Patterning of Ceramics (Review) vol.115, pp.1338, 2007, https://doi.org/10.2109/jcersj.115.101