DOI QR코드

DOI QR Code

Synthesis of Magnetic Nanoparticles of Fe3O4 and CoFe2O4 and Their Surface Modification by Surfactant Adsorption

  • 발행 : 2006.02.20

초록

$Fe_3O_4$ and $CoFe_2O_4$ magnetic nanoparticles have been synthesized successfully in aqueous solution and coated with oleic acid. The solid and organic solution of the synthesized nanoparticles was obtained. Self-assembled monolayer films were formed using organic solution of these nanoparticles. The crystal sizes determined by Debye-Scherre equation with XRD data were found close to the particle sizes calculated from TEM images, and this indicates that the synthesized particles are nanocrystalline. Especially, EDS, ED, FT-IR, TGA/DTA and DSC were used to characterize the nanoparticles and the oleic acid adsorption, and it was found that oleic acid molecule on the $Fe_3O_4$ nanoparticle is a bilayer adsorption, while that on $CoFe_2O_4$ nanoparticle is single layer adsorption. The superparamagnetic behavior of the nanoparticles was documented by the hysteresis loop measured at 300 K.

키워드

참고문헌

  1. Sun, S.; Anders, S.; Hamann, H. F.; Thiele, J.-U.; Baglin, J. E. E.; Thomson, T.; Fullerton, E. E.; Murray, C. B.; Terris, B. D. J. Am. Chem. Soc. 2002, 124, 2884 https://doi.org/10.1021/ja0176503
  2. Fried, T.; Shemer, G.; Markovich, G. Adv. Mater. 2001, 13, 1158 https://doi.org/10.1002/1521-4095(200108)13:15<1158::AID-ADMA1158>3.0.CO;2-6
  3. Ahmed, S. R.; Kofinas, P. Macromolecules 2002, 35, 3338 https://doi.org/10.1021/ma011797x
  4. Albuquerque, A. S.; Ardisson, J. D.; Macedo, W. A. A.; Lopez, J. L.; Paniago, R.; Persiano, A. I. C. J. Magn. Magn. Mater. 2001, 226-230, 1379 https://doi.org/10.1016/S0304-8853(00)00915-X
  5. Gonzalez-Carreno, T.; Morales, M. P.; Serna, C. J. Materials Letters 2000, 43, 97 https://doi.org/10.1016/S0167-577X(99)00238-4
  6. Kim, K. Bull. Korean Chem. Soc. 1987, 8, 430
  7. Chi, E. O.; Kang, J. K.; Kwon, Y. U.; Hur, N. H. Bull. Korean Chem. Soc. 1997, 18, 1238
  8. Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 278, 1989
  9. Rosensweig, R. Ferrohydrodynamics; Cambridge University Press: Cambridge, 1985
  10. Kim, D. K.; Zhang, Y.; Kehr, J.; Klason, T.; Bjelke, B.; Muhammed, M. J. Magn. Magn. Mater. 2001, 225, 256 https://doi.org/10.1016/S0304-8853(00)01255-5
  11. Roger, J.; Pons, J. N.; Massart, R.; Halbreich, A.; Bacri, J. C. Euro. Phys.: Appl. Phys. 1999, 5, 321 https://doi.org/10.1051/epjap:1999144
  12. Kang, E. A.; Park, J. N.; Hwang, Y. S.; Kang, M. S.; Park, J. G.; Hyeon, T. H. J. Phys. Chem. B 2004, 108, 13932 https://doi.org/10.1021/jp049041y
  13. Meldrum, F. C.; Kotov, N. A.; Fendler, J. H. Langmuir 1994, 10, 2035 https://doi.org/10.1021/la00019a001
  14. Motte, L.; Billoudet, F.; Pileni, M. P. J. Phys. Chem. 1995, 99, 16425 https://doi.org/10.1021/j100044a033
  15. Giersig, M.; Mulvaney, P. J. Phys. Chem. 1993, 97, 6334 https://doi.org/10.1021/j100126a003
  16. Giersig, M.; Hiigendorff, M. J. Phys. D: Appl. Phys. 1999, 32, L111 https://doi.org/10.1088/0022-3727/32/22/101
  17. Bizdoaca, E. L.; Spasova, M.; Farle, M.; Hilgendorff, M.; Caruso, F. J. Magn. Magn. Mater. 2002, 240, 44 https://doi.org/10.1016/S0304-8853(01)00724-7
  18. Cannas, C.; Gatteschi, D.; Musinu, A.; Piccaluga, G.; Sangregorio, C. J. Phys. Chem. B 1998, 102, 7721 https://doi.org/10.1021/jp981355w
  19. Park, S.-J.; Kim, S.; Lee, S.; Khim, Z. G.; Char, K.; Hyeon, T. J. Am. Chem. Soc. 2000, 122, 8581 https://doi.org/10.1021/ja001628c
  20. Puntes, A. F.; Krishnan, K. M.; Alivisatos, A. P. Science 2001, 291, 2115 https://doi.org/10.1126/science.1057553
  21. Sun, S.; Murray, C. B. J. Appl. Phys. 1999, 85, 4325 https://doi.org/10.1063/1.370357
  22. Suslick, K. S.; Fang, M.; Hyeon, T. J. Am. Chem. Soc. 1996, 118, 11960 https://doi.org/10.1021/ja961807n
  23. Sahoo, Y.; Pizem, H.; Fried, T.; Golodnitsky, D.; Burstein, L.; Sukenik, C. N.; Markovich, G. Langmuir 2001, 17, 7907 https://doi.org/10.1021/la010703+
  24. Shen, L.; Laibinis, P. E.; Hatton, T. A. Langmuir 1999, 15, 447 https://doi.org/10.1021/la9807661
  25. Shen, L.; Stachowiak, A.; Fateen, S.-E. K.; Laibinis, P. E.; Hatton, T. A. Langmuir 2001, 17, 288 https://doi.org/10.1021/la9916732
  26. Darken, L. S.; Gurry, R. W. J. Am. Chem. Soc. 1946, 68, 798 https://doi.org/10.1021/ja01209a030
  27. Han, D. H.; Wang, J. P.; Luo, H. L. J. Magn. Magn. Mater. 1994, 136, 176 https://doi.org/10.1016/0304-8853(94)90462-6
  28. Lee, L.; Isobe, T.; Senna, M. J. Colloid. Interface. Sci. 1996, 177, 490 https://doi.org/10.1006/jcis.1996.0062

피인용 문헌

  1. Synthesis of Well-Dispersed Aqueous-Phase Magnetite Nanoparticles and Their Metabolism as an MRI Contrast Agent for the Reticuloendothelial System vol.2011, pp.22, 2011, https://doi.org/10.1002/ejic.201100017
  2. Synthesis and properties of nanocomposites based on magnetite and biocompatible polymers vol.84, pp.5, 2011, https://doi.org/10.1134/S1070427211050181
  3. Nanoparticles within Nonpolar and Aqueous Solvents vol.116, pp.7, 2012, https://doi.org/10.1021/jp205088x
  4. The Effect of Magnetic Fe3O4 Nanoparticles on the Growth of Genetically Manipulated Bacterium, Pseudomonas aeruginosa (PTSOX4) vol.11, pp.1, 2013, https://doi.org/10.5812/ijb.9302
  5. Synthesis, Surface Modification and Characterisation of Biocompatible Magnetic Iron Oxide Nanoparticles for Biomedical Applications vol.18, pp.7, 2013, https://doi.org/10.3390/molecules18077533
  6. Synthesis and Magnetorheology Study of Iron Oxide and Iron Cobalt Oxide Suspensions vol.2013, pp.1687-4129, 2013, https://doi.org/10.1155/2013/612894
  7. 12-Hydrothermal Synthesis and Characterization of Fe3O4 Nanorods vol.23, pp.2, 2013, https://doi.org/10.1007/s10904-012-9789-2
  8. Superparamagnetic iron oxide nanoparticles: effect of iron oleate precursors obtained with a simple way vol.24, pp.8, 2013, https://doi.org/10.1007/s10854-013-1213-3
  9. Sorption characteristics of nano manganese oxide: efficient sorbent for removal of metal ions from aqueous streams vol.297, pp.1, 2013, https://doi.org/10.1007/s10967-012-2393-7
  10. Magnetic properties of nickel ferrite nanoparticles prepared using flotation extraction vol.49, pp.1, 2013, https://doi.org/10.1134/S0020168512110064
  11. Adsorption characteristics of Titan yellow and Congo red on CoFe2O4 magnetic nanoparticles vol.11, pp.6, 2014, https://doi.org/10.1007/s13738-014-0448-0
  12. The effect of SiO2 shell thickness on the magnetic properties of ZnFe2O4 nanoparticles vol.16, pp.3, 2014, https://doi.org/10.1007/s11051-014-2316-3
  13. Nanoparticles as an Efficient Catalyst for the Oxidation of Alcohols to Carbonyl Compounds in the Presence of Oxone as an Oxidant vol.35, pp.7, 2014, https://doi.org/10.5012/bkcs.2014.35.7.2029
  14. Sensitive molecular determination of polycyclic aromatic hydrocarbons based on thiolated Calix[4]arene and CdSe quantum dots (QDs) vol.44, pp.6, 2014, https://doi.org/10.1007/s10800-014-0678-y
  15. O (TM = Mn, Fe, Co, Ni) aerogel nanoparticles vol.67, pp.1, 2014, https://doi.org/10.1051/epjap/2014140074
  16. Lipoamino Acid Coated Superparamagnetic Iron Oxide Nanoparticles Concentration and Time Dependently Enhanced Growth of Human Hepatocarcinoma Cell Line (Hep-G2) vol.2015, pp.1687-4129, 2015, https://doi.org/10.1155/2015/451405
  17. TGA and magnetization measurements for determination of composition and polymer conversion of magnetic hybrid particles vol.26, pp.10, 2015, https://doi.org/10.1002/pat.3562
  18. Encapsulation of Pd(II) into superparamagnetic nanoparticles grafted with EDTA and their catalytic activity towards reduction of nitroarenes and Suzuki-Miyaura coupling vol.29, pp.4, 2015, https://doi.org/10.1002/aoc.3258
  19. Polylactide-based Magnetic Spheres as Efficient Carriers for Anticancer Drug Delivery vol.7, pp.40, 2015, https://doi.org/10.1021/acsami.5b07567
  20. <i>Balanites aegyptiaca</i> Oil Synthesized Iron Oxide Nanoparticles: Characterization and Antibacterial Activity vol.07, pp.03, 2016, https://doi.org/10.4236/jbnb.2016.73016
  21. Magnetic immobilization of Bacillus subtilis natto cells for menaquinone-7 fermentation vol.100, pp.1, 2016, https://doi.org/10.1007/s00253-015-6977-3
  22. Role of Primary and Secondary Surfactant Layers on the Thermal Conductivity of Lauric Acid Coated Magnetite Nanofluids vol.120, pp.21, 2016, https://doi.org/10.1021/acs.jpcc.5b12476
  23. H]/Pd(II) nanocatalyst and application in Suzuki and Heck coupling reactions vol.31, pp.2, 2016, https://doi.org/10.1002/aoc.3558
  24. Low temperature synthesis of multiwalled carbon nanotubes and incorporation into an organic solar cell vol.12, pp.1, 2017, https://doi.org/10.1080/17458080.2017.1357842
  25. Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles vol.24, pp.24, 2017, https://doi.org/10.1007/s11356-017-9571-7
  26. Nanoparticles vol.38, pp.8, 2017, https://doi.org/10.1002/bkcs.11187
  27. Magnetic structural properties of maghemite nanoparticles obtained with the use of different stabilizers vol.58, pp.7, 2017, https://doi.org/10.1134/S0022476617070162
  28. Preparation of the Sm3+-Doped Magnetic Nanoparticles via Microwave-Assisted Polyol Synthesis vol.7, pp.1, 2017, https://doi.org/10.1007/s12668-016-0385-8
  29. Preparation of Ferromagnetic Manganese Doped Cobalt Ferrite-Silica Core Shell Nanoparticles for Possible Biological Application vol.334-335, pp.1662-9507, 2013, https://doi.org/10.4028/www.scientific.net/DDF.334-335.19
  30. Microwave characterization of magnetically hard and soft ferrite nanoparticles in K-band vol.116, pp.15, 2014, https://doi.org/10.1063/1.4898138
  31. Comparative study of sol–gel methods for the facile synthesis of tailored magnetic silica spheres vol.3, pp.7, 2016, https://doi.org/10.1088/2053-1591/3/7/075402
  32. Multiferroic Core-Shell Nanofibers, Assembly in a Magnetic Field, and Studies on Magneto-Electric Interactions vol.11, pp.1, 2017, https://doi.org/10.3390/ma11010018
  33. Thermal conductivity studies on magnetite nanofluids coated with short-chain and long-chain fatty acid surfactants vol.41, pp.5, 2018, https://doi.org/10.1007/s12034-018-1638-7
  34. Effect of nano-magnetite particle content on mechanical, thermal and magnetic properties of polypropylene composites vol.39, pp.S3, 2018, https://doi.org/10.1002/pc.24727
  35. Development of bark-based magnetic iron oxide particle (BMIOP), a bio-adsorbent for removal of arsenic (III) from water vol.25, pp.20, 2018, https://doi.org/10.1007/s11356-018-1792-x
  36. Persulfate activation with rice husk-based magnetic biochar for degrading PAEs in marine sediments pp.1614-7499, 2018, https://doi.org/10.1007/s11356-018-2423-2
  37. Magnetic molecularly imprinted polymer nanoparticles for dispersive micro solid-phase extraction and determination of buprenorphine in human urine samples by HPLC-FL vol.15, pp.7, 2018, https://doi.org/10.1007/s13738-018-1355-6
  38. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4 Nanoparticles Through a Simple Hydrothermal Condition vol.5, pp.6, 2010, https://doi.org/10.1007/s11671-010-9599-9
  39. Fabrication of highly fluorescent multiple Fe3O4 nanoparticles core-silica shell nanoparticles vol.21, pp.1, 2019, https://doi.org/10.1007/s11051-018-4445-6
  40. Structure and Magnetic Characterization of Core-Shell Fe@ZrO2 Nanoparticles Synthesized by Sol-Gel Process vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2279
  41. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions vol.310, pp.1, 2006, https://doi.org/10.1016/j.jcis.2007.01.081
  42. Characterization of Co1-xZnxFe2O4 nanoparticles synthesized by co-precipitation method vol.403, pp.13, 2008, https://doi.org/10.1016/j.physb.2007.08.219
  43. PHOTOACOUSTICS AND MAGNETIC STUDIES OF Fe3O4 NANOPARTICLES vol.9, pp.3, 2006, https://doi.org/10.1142/s0219581x10006685
  44. Superparamagnetic nanoclusters coated with oleic acid bilayers for stabilization of emulsions of water and oil at low concentration vol.351, pp.1, 2006, https://doi.org/10.1016/j.jcis.2010.06.048
  45. An easy fabrication of monodisperse oleic acid-coated Fe3O4 nanoparticles vol.64, pp.22, 2010, https://doi.org/10.1016/j.matlet.2010.08.025
  46. CoFe2O4−TiO2 and CoFe2O4−ZnO Thin Film Nanostructures Elaborated from Colloidal Chemistry and Atomic Layer Deposition vol.26, pp.23, 2006, https://doi.org/10.1021/la103364y
  47. A novel route for the preparation of thermally sensitive core-shell magnetic nanoparticles vol.52, pp.1, 2011, https://doi.org/10.1016/j.polymer.2010.11.011
  48. Water-Soluble Anisotropic Iron Oxide Nanoparticles: Dextran-Coated Crystalline Nanoplates and Nanoflowers vol.32, pp.3, 2006, https://doi.org/10.1080/02726351.2013.850460
  49. Engineered multifunctional nanomaterials for multimodal imaging of retinoblastoma cells in vitro. vol.25, pp.11, 2006, https://doi.org/10.1080/09205063.2014.917040
  50. Reusable nanocomposite of CoFe 2 O 4 /chitosan- graft -poly(acrylic acid) for removal of Ni(II) from aqueous solution vol.5, pp.2, 2014, https://doi.org/10.1088/2043-6262/5/2/025007
  51. Magnetic properties of Cr doped Fe 3 O 4 porous nanoparticles prepared through a co-precipitation method using surfactant vol.5, pp.3, 2006, https://doi.org/10.1088/2043-6262/5/3/035017
  52. Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process vol.2, pp.4, 2006, https://doi.org/10.12989/anr.2014.2.4.187
  53. Photocatalytic activity of NiS, NiO and coupled NiS-NiO for degradation of pharmaceutical pollutant cephalexin under visible light vol.7, pp.86, 2017, https://doi.org/10.1039/c7ra09461b
  54. A rapid and efficient thermal decomposition approach for the synthesis of manganese-zinc/oleylamine core/shell ferrite nanoparticles vol.693, pp.None, 2006, https://doi.org/10.1016/j.jallcom.2016.09.253
  55. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst vol.221, pp.None, 2006, https://doi.org/10.1016/j.fuel.2018.02.135
  56. Mechanistic and energetic studies of superparamagnetic iron oxide nanoparticles as a cyclophosphamide anticancer drug nanocarrier: A quantum mechanical approach vol.44, pp.1, 2006, https://doi.org/10.1177/1468678319825689
  57. Self‐emulsion polymerization of amphiphilic monomers—a green route to synthesis of polymeric nanoscaffolds vol.57, pp.11, 2006, https://doi.org/10.1002/pola.29370
  58. Modification of Zeolite by Magnetic Nanoparticles for Organic Dye Removal vol.44, pp.6, 2006, https://doi.org/10.1007/s13369-019-03788-9
  59. Iron oxide-based nanostructured ceramics with tailored magnetic and mechanical properties: development of mechanically robust, bulk superparamagnetic materials vol.1, pp.8, 2006, https://doi.org/10.1039/c9na00222g
  60. Magnetized Activated Carbon Prepared by Oak Shell Biowaste and Modified with Nickel Hexacyanoferrate for Selective Removal of Cesium vol.29, pp.6, 2006, https://doi.org/10.1007/s10904-019-01154-8
  61. Comparison of Y and ZSM-5 zeolite modified with magnetite nanoparticles in removal of hydrogen sulfide from air vol.17, pp.1, 2006, https://doi.org/10.1007/s13762-019-02348-w
  62. Antibacterial activity of SPIONs versus ferrous and ferric ions under aerobic and anaerobic conditions: a preliminary mechanism study vol.14, pp.2, 2006, https://doi.org/10.1049/iet-nbt.2019.0266
  63. A Fast and Robust Approach for the Green Synthesis of Spherical Magnetite (Fe3O4) Nanoparticles byTilia tomentosa(Ihlamur) Leaves and its Antibacterial Studies vol.26, pp.2, 2006, https://doi.org/10.34172/ps.2020.5
  64. Controlled syntheses of monodispersed metal oxide nanocrystals from bulk metal oxide materials vol.22, pp.28, 2006, https://doi.org/10.1039/d0ce00193g
  65. Chemical insight into the adsorption of reactive wool dyes onto amine-functionalized magnetite/silica core-shell from industrial wastewaters vol.27, pp.26, 2020, https://doi.org/10.1007/s11356-019-06530-y