Browse > Article
http://dx.doi.org/10.5695/JKISE.2019.52.2.96

Effect of Hydrophobizing Method on Corrosion Resistance of Magnesium Alloy with Plasma Electrolytic Oxidation  

Joo, Jaehoon (Department of Metallurgical Engineering, Pukyong National University)
Kim, Donghyun (Analysis Technical Center, Korea Institute of Ceramic Engineering and Technology)
Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-Eui University)
Lee, Junghoon (Department of Metallurgical Engineering, Pukyong National University)
Publication Information
Journal of the Korean institute of surface engineering / v.52, no.2, 2019 , pp. 96-102 More about this Journal
Abstract
Magnesium and its alloys are prone to be corroded, thus surface treatments improving corrosion resistance are always required for practical applications. As a surface treatment of magnesium alloys, plasma electrolytic oxidation (PEO), creating porous stable oxide layer by a high voltage discharge in electrolyte, enhances the corrosion resistance. However, due to superhydrophilicity of the porous oxide layer, which easily allow the penetration of corrosive media toward magnesium alloys substrate, post-treatments inhibiting the transfer of corrosive media in porous oxide layer are required. In this work, we employed a hydrophobizing method to enhance the corrosion resistance of PEO treated Mg alloy. Three types of hydrophobizing techniques were used for PEO layer. Thin Teflon coating with solvent evaporation, self-assembled monolayer (SAM) coating of octadecyltrichlorosilane (OTS) based on solution method and SAM coating of perfluorodecyltrichlorosilane (FDTS) based on vacuum method significantly enhances corrosion resistance of PEO treated Mg alloy with reducing the contact of water on the surface. In particular, the vacuum based FDTS coating on PEO layer shows the most effective hydrophobicity with the highest corrosion resistance.
Keywords
Hydrophobic; Plasma Electrolytic Oxidation (PEO) Magnesium alloy; Corrosion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G.L. Song, A. Atrens, Advanced Engineering Materials 1 (1999) 11-33.   DOI
2 B. Mordike, T. Ebert, Materials Science Engineering: A 302 (2001) 37-45.   DOI
3 J. Lee, W. Chung, U. Jung, Y. Kim, Surface and Coatings Technology 205 (2011) 4018-4023.   DOI
4 J.H. Lee, Y.H. Kim, U.C. Jung, W.S. Chung, KOREAN JOURNAL OF METALS AND MATERIALS 48 (2010) 218-224.   DOI
5 A. Sharma, M. Suresh, H. Bhojraj, H. Narayanamurthy, R. Sahu, Metal Finishing 96 (1998) 10-19.
6 K.Z. Chong, T.S. Shih, Materials Chemistry and Physics 80 (2003) 191-200.   DOI
7 N. Van Phuong, S. Moon, 한국표면공학회지 49 (2016) 141-146.   DOI
8 G.B. Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade, Journal of Magnesium and Alloys 5 (2017) 74-132.   DOI
9 A. Yerokhin, X. Nie, A. Leyland, A. Matthews, S. Dowey, Surface and Coatings Technology 122 (1999) 73-93.   DOI
10 P.B. Srinivasan, J. Liang, C. Blawert, M. Stormer, W. Dietzel, Applied Surface Science 255 (2009) 4212-4218.   DOI
11 H. Duan, K. Du, C. Yan, F. Wang, Electrochimica Acta 51 (2006) 2898-2908.   DOI
12 J. Ou, B. Perot, J.P. Rothstein, Physics of fluids 16 (2004) 4635-4643.   DOI
13 F. Hizal, N. Rungraeng, J. Lee, S. Jun, H.J. Busscher, H.C. Van der Mei, C.-H. Choi, ACS Applied Materials & Interfaces 9 (2017) 12118-12129.   DOI
14 H. Wang, Y. Zhu, Z. Hu, X. Zhang, S. Wu, R. Wang, Y. Zhu, Chemical Engineering Journal 303 (2016) 37-47.   DOI
15 O. Parent, A. Ilinca, Cold regions science and technology 65 (2011) 88-96.   DOI
16 A.B.D. Cassie, S. Baxter, Transactions of the Faraday Society 40 (1944) 546-551.   DOI
17 S. Moon, C. Yang, S. Na, 한국표면공학회지 47 (2014) 147-154.   DOI
18 W. Choi, A. Tuteja, J.M. Mabry, R.E. Cohen, G.H. McKinley, Journal of Colloid and Interface Science 339 (2009) 208-216.   DOI
19 J. Liang, P.B. Srinivasan, C. Blawert, M. Stormer, W. Dietzel, Electrochimica Acta 54 (2009) 3842-3850.   DOI
20 S. Gnedenkov, V. Egorkin, S. Sinebryukhov, I. Vyaliy, A. Pashinin, A. Emelyanenko, L. Boinovich, Surface and Coatings Technology 232 (2013) 240-246.   DOI
21 J. Lee, Y. Kim, W. Chung, Applied Surface Science 259 (2012) 454-459.   DOI
22 A. Ulman, Chemical reviews 96 (1996) 1533-1554.   DOI
23 C. Jeong, J. Lee, K. Sheppard, C.-H. Choi, Langmuir 31 (2015) 11040-11050.   DOI
24 J. Lee, S. Shin, Y. Jiang, C. Jeong, H.A. Stone, C.-H. Choi, Advanced Functional Materials 27 (2017) 1606040-n/a.   DOI
25 B. Saha, W.Q. Toh, E. Liu, S.B. Tor, D.E. Hardt, J. Lee, Journal of Micromechanics and Microengineering 26 (2015) 013002.   DOI
26 G. Zhuang, J.P. Kutter, Journal of Micromechanics and Microengineering 21 (2011) 105020.   DOI
27 A. Marmur, E. Bittoun, Langmuir 25 (2009) 1277-1281.   DOI
28 R.N. Wenzel, Industrial & Engineering Chemistry 28 (1936) 988-994.   DOI
29 M.A. Sarshar, C. Swarctz, S. Hunter, J. Simpson, C.-H. Choi, Colloid and Polymer Science 291 (2013) 427-435.   DOI
30 P.J. Yunker, T. Still, M.A. Lohr, A. Yodh, Nature 476 (2011) 308.   DOI