• Title/Summary/Keyword: Selectivity of frequency

Search Result 152, Processing Time 0.027 seconds

On Maximum Diversity Order over Doubly-Selective MIMO-OFDM Channes

  • Yang Qinghai;Kwak Kyung Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7A
    • /
    • pp.628-638
    • /
    • 2005
  • The analysis of maximum diversity order and coding gain for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over time-and frequency-selective (or doubly-selective) channels is addressed in this paper. A novel channel time-space correlation function is developed given the spatially correlated doubly-selective Rayleigh fading channel model. Based on this channel-model assumption, the upper-bound of pairwise error probability (PEP) for MIMO-OFDM systems is derived under the maximum likelihood (ML) detection. For a certain space-frequency code, we quantify the maximum diversity order and deduce the expression of coding gain. In this wort the impact of channel time selectivity is especially studied and a new definition of time diversity is illustrated correspondingly

A study on the HF monolithic ceramic filter using thickness mode (두께진동모드를 이용한 고주파대역의 단일체 세라믹필터에 대한 연구)

  • Park, Chang-Yub;Wi, Gyu-Jin;Lee, Doo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.242-244
    • /
    • 1987
  • Using the energy trapping theory and the acoustic coupling theory. the Bandpass filter(center frequency = 10.7 MHz) of the fundamental thickness mode was made from the composition of $Pb_{0.96}Sr_{0.04}(Zr_{0.53}Ti_{0.47})O_3$+ 1wt% $Fe_2O_3$. Also, in the double mode monolithic filter, It was observed that as decreasing the size of the electrodes, or shortening the gap between two electrodes, the percent frequency separation was increased. Based on these. a 10.7 MHz uniwafer filter was made having the characteristics that bandwidth was 700 KHz and the percent frequency separation was 6 [dB] and selectivity was 29 [dB], end spurious response was 24 [dB] and insertion loss was 7 [dB].

  • PDF

Implementation of Hierarchical Spatial Filters with Orientation Selectivity by Using Diffusion Network (확산망에 의한 방향성 계층적 공간 필터의 구현)

  • 최태완;김재창
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.130-138
    • /
    • 1996
  • In this paper, we propose a neural network which detect edges of different orentation and spatial frequency in arbitrary image data. We constructed the proposed neural network iwth two different types neural network. A diffusion network performs the gaussian operation efficiently by the diffusion process. And the spatial difference network has specially designed connections suitble to detect the contours of a specific oriention. Simulation results showed that the proposed neural network can extract the edges of selected orientation efficiently by applying the neural network to a test pattern and the real image.

  • PDF

Ru-NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol

  • Mishra, Dinesh Kumar;Dabbawala, Aasif A.;Truong, Cong Chien;Alhassan, Saeed M.;Jegal, Jonggeon;Hwang, Jin Soo
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.325-334
    • /
    • 2018
  • Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru-Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with $Ru-NiO_x$ (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with $TiO_2$ used as support material. Ru-Ni bimetallic nanohybrids (represented as $5Ru-5NiO/TiO_2$) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. ($374h^{-1}$). In contrast, monometallic $Ru/TiO_2$ catalyst shows poor performance with ($TOF=251h^{-1}$). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic $Ru-NiO/TiO_2$ catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. $Ru-NiO/TiO_2$ efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at $120^{\circ}C$ and 55 bar of hydrogen ($H_2$) pressure. Moreover, $Ru-NiO/TiO_2$ catalyst could also be easily recovered and reused up to four runs without notable change in original activity.

Enhancement in Selectivity of Nonenzymatic Glucose Sensors Based on Mesoporous Platinum by A.C. Impedance

  • Park, Se-Jin;Boo, Han-Kil
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.147-153
    • /
    • 2008
  • Improvement of the selectivity of nonenzymatic glucose based on mesoporous platinum ($H_1$-ePt) by using A.C. impedance is reported. The idea of the present work is based on the novel effect of the mesoporous electrode that the apparent exchange current due to glucose oxidation remarkably grows although the reaction kinetics on the surface is still sluggish. It is expected that the enlarged apparent exchange current on the mesoporous electrode can raise the sensitivity of admittance in A.C. impedance to glucose concentration. At a low frequency, A.C. impedance could become more powerful. The admittance at 0.01 Hz is even more sensitive to glucose than to ascorbic acid while amperometry exhibits the inverse order of sensitivity. This is the unique behavior that is neither observed by A.C. impedance on flat platinum electrode nor obtained by amperometry. The study shows how the combination of A.C. impedance and nano-structured surface can be applied to the detection of sluggish reaction such as electrochemical oxidation of glucose.

Etching Characteristics of HfAlO3 Thin Films Using an Cl2/BCl3/Ar Inductively Coupled Plasma

  • Ha, Tae-Kyung;Woo, Jong-Chang;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.166-169
    • /
    • 2010
  • In this study, we changed the etch parameters (gas mixing ratio, radio frequency [RF] power, direct current [DC]-bias voltage, and process pressure) and then monitored the effect on the $HfAlO_3$ thin film etch rate and the selectivity with $SiO_2$. A maximum etch rate of 108.7 nm/min was obtained in $Cl_2$ (3 sccm)/$BCl_3$ (4 sccm)/Ar (16 sccm) plasma. The etch selectivity of $HfAlO_3$ to $SiO_2$ reached 1.11. As the RF power and the DC-bias voltage increased, the etch rate of the $HfAlO_3$ thin film increased. As the process pressure increased, the etch rate of the $HfAlO_3$ thin films increased. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. According to the results, the etching of $HfAlO_3$ thin film follows the ion-assisted chemical etching.

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

Role of $N_2$ flow rate on etch characteristics and variation of line edge roughness during etching of silicon nitride with extreme ultra-violet resist pattern in dual-frequency $CH_2F_2/N_2$/Ar capacitively coupled plasmas

  • Gwon, Bong-Su;Jeong, Chang-Ryong;Lee, Nae-Eung;Lee, Seong-Gwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.458-458
    • /
    • 2010
  • The process window for the etch selectivity of silicon nitride ($Si_3N_4$) layers to extreme ultra-violet (EUV) resist and variation of line edge roughness (LER) of EUV resist were investigated durin getching of $Si_3N_4$/EUV resist structure in a dual-frequency superimposed capacitive coupled plasma (DFS-CCP) etcher by varying the process parameters, such as the $CH_2F_2$ and $N_2$ gas flow rate in $CH_2F_2/N_2$/Ar plasma. The $CH_2F_2$ and $N_2$ flow rate was found to play a critical role in determining the process window for infinite etch selectivity of $Si_3N_4$/EUV resist, due to disproportionate changes in the degree of polymerization on $Si_3N_4$ and EUV resist surfaces. The preferential chemical reaction between hydrogen and carbon in the hydrofluorocarbon ($CH_xF_y$) polymer layer and the nitrogen and oxygen on the $Si_3N_4$, presumably leading to the formation of HCN, CO, and $CO_2$ etch by-products, results in a smaller steady-state hydrofluorocarbon thickness on $Si_3N_4$ and, in turn, in continuous $Si_3N_4$ etching due to enhanced $SiF_4$ formation, while the $CH_xF_y$ layer is deposited on the EUV resist surface. Also critical dimension (and line edge roughness) tend to decrease with increasing $N_2$ flow rate due to decreased degree of polymerization.

  • PDF

Effects of $CH_{2}F_{2}$ and $H_2$ flow rates on process window for infinite etch selectivity of silicon nitride to PVD a-C in dual-frequency capacitively coupled plasmas

  • Kim, Jin-Seong;Gwon, Bong-Su;Park, Yeong-Rok;An, Jeong-Ho;Mun, Hak-Gi;Jeong, Chang-Ryong;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.250-251
    • /
    • 2009
  • For the fabrication of a multilevel resist (MLR) based on a very thin amorphous carbon (a-C) layer an $Si_{3}N_{4}$ hard-mask layer, the selective etching of the $Si_{3}N_{4}$ layer using physical-vapor-deposited (PVD) a-C mask was investigated in a dual-frequency superimposed capacitively coupled plasma etcher by varying the following process parameters in $CH_{2}F_{2}/H_{2}/Ar$ plasmas : HF/LF powr ratio ($P_{HF}/P_{LF}$), and $CH_{2}F_{2}$ and $H_2$ flow rates. It was found that infinitely high etch selectivities of the $Si_{3}N_{4}$ layers to the PVD a-C on both the blanket and patterned wafers could be obtained for certain gas flow conditions. The $H_2$ and $CH_{2}F_{2}$ flow ratio was found to play a critical role in determining the process window for infinite $Si_{3}N_{4}$/PVDa-C etch selectivity, due to the change in the degree of polymerization. Etching of ArF PR/BARC/$SiO_x$/PVDa-C/$Si_{3}N_{4}$ MLR structure supported the possibility of using a very thin PVD a-C layer as an etch-mask layer for the $Si_{3}N_{4}$ layer.

  • PDF