Browse > Article
http://dx.doi.org/10.4313/TEEM.2010.11.4.166

Etching Characteristics of HfAlO3 Thin Films Using an Cl2/BCl3/Ar Inductively Coupled Plasma  

Ha, Tae-Kyung (School of Electrical and Electronics Engineering, Chung-Ang University)
Woo, Jong-Chang (School of Electrical and Electronics Engineering, Chung-Ang University)
Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.11, no.4, 2010 , pp. 166-169 More about this Journal
Abstract
In this study, we changed the etch parameters (gas mixing ratio, radio frequency [RF] power, direct current [DC]-bias voltage, and process pressure) and then monitored the effect on the $HfAlO_3$ thin film etch rate and the selectivity with $SiO_2$. A maximum etch rate of 108.7 nm/min was obtained in $Cl_2$ (3 sccm)/$BCl_3$ (4 sccm)/Ar (16 sccm) plasma. The etch selectivity of $HfAlO_3$ to $SiO_2$ reached 1.11. As the RF power and the DC-bias voltage increased, the etch rate of the $HfAlO_3$ thin film increased. As the process pressure increased, the etch rate of the $HfAlO_3$ thin films increased. The chemical state of the etched surfaces was investigated with X-ray photoelectron spectroscopy. According to the results, the etching of $HfAlO_3$ thin film follows the ion-assisted chemical etching.
Keywords
Etch; $HfAlO_3$; Inductively coupled plasma; X-ray photoelectron spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. Shamiryan, M. Baklanov, M. Claes, W. Boullart, and V. Paraschiv, Chem. Eng. Comm. 196, 1475 (2009) [DOI: 10.1080/00986440903155428].   DOI   ScienceOn
2 G. D. Wilk, E. M. Wallace, and J. M. Anthony, J. Appl. Phys. 89, 5243 (2001) [DOI: 10.1063/1.1361065].   DOI   ScienceOn
3 W. J. Zhu, T. Tamagawa, M. Gibson, T. Furukawa, and T. P. Ma, IEEE Electron Device Lett. 23, 649 (2002) [DOI: 10.1109/LED.2002.805000].   DOI   ScienceOn
4 V. Bliznetsov, R. Kumar, L. K. Bera, L. W. Yip, A. Du, and T. E. Hui, Thin Solid Films 504, 140 (2006) [DOI: 10.1016/j.tsf.2005.09.158].   DOI   ScienceOn
5 J. Chen, W. J. Yoo, Z. Y. L. Tan, Y. Wang, and D. S. H. Chan, J. Vac. Sci. Technol. A 22, 1552 (2004) [DOI: 10.1116/1.1705590].   DOI   ScienceOn
6 G. H. Kim, K. T. Kim, J. C. Woo, and C. I. Kim, Ferroelectrics 357, 41 (2007) [DOI: 10.1080/00150190701527605].   DOI   ScienceOn
7 W. S. Hwang, J. Chen, W. J. Yoo, and V. Bliznetsov, J. Vac. Sci. Technol. A 23, 964 (2005) [DOI: 10.1116/1.1927536].   DOI   ScienceOn
8 J. C. Woo, D. S. Um, and C. I. Kim, Thin Solid Films 518, 2905 (2010) [DOI: 10.1016/j.tsf.2009.10.144].   DOI   ScienceOn
9 D. P. Kim, G. H. Kim, J. C. Woo, X. Yang, D. S. Um, and C. I. Kim, Ferroelectrics 381, 30 (2009) [DOI: 10.1080/00150190902880621].   DOI   ScienceOn
10 X. Yang, D. P. Kim, G. H. Kim, J. C. Woo, D. S. Um, and C. I. Kim, Ferroelectrics 384, 39 (2009) [DOI: 10.1080/00150190902892741].   DOI   ScienceOn
11 K. J. Park, K. H. Kim, W. M. Lee, H. Chae, I. S. Han, and H. D. Lee, Trans. Electr. Electron. Mater. 10, 35 (2009).   DOI   ScienceOn