• Title/Summary/Keyword: Selective area epitaxy

Search Result 19, Processing Time 0.022 seconds

Selective Epitaxy Growth of Multiple-Stacked InP/InGaAs on the Planar Type by Chemical Beam Epitaxy (화학적 빔 에피탁시에 의한 평면구조에서의 InP/InGaAs 다층구조의 선택적 영역 에피 성장)

  • Han, Il-Ki;Lee, Jung-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.468-473
    • /
    • 2009
  • Selective area epitaxy of multiple-stacked InP/InGaAs structures were grown by chemical beam epitaxy. The width of top of the multiple-stacked InP/InGaAs layer which were selectively grown on the stripe lines parallel to the <011> direction was narrowed, while the width of top of the multiple-stacked InP/InGaAs layer on the stripe lines parallel to the <01-1> was widen. This difference according to the <011> and <01-1> direction was explained by the growth of InGaAs <311>A and B faces on the (100) InP surface on the stripe lines parallel to the <01-1> direction. Under growth rate of $1\;{\mu}m/h$, top of the multiple-stacked InP/InGaAs was flattened as the pressure of group V gas was decreased. This phenomenon was understood by the saturation of group V element on the surface.

Realization of 1D-2DEG Composite Nanowire FET by Selective Area Molecular Beam Epitaxy (선택적 분자선 에픽택시 방법에 의한 1D-2DEG 혼성 나노선 FET의 구현)

  • Kim, Yun-Joo;Kim, Dong-Ho;Kim, Eun-Hong;Seo, Yoo-Jung;Roh, Cheong-Hyun;Hahn, Cheol-Koo;Ogura, Mutsuo;Kim, Tae-Geun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1005-1009
    • /
    • 2006
  • High quality three-dimensional (3D) heterostructures were constructed by selective area (SA) molecular beam epitaxy (MBE) using a specially patterned GaAs (001) substrate to improve the efficiency of tarrier transport. MBE growth parameters such as substrate temperature, V/III ratio, growth ratio, group V sources (As2, As4) were varied to calibrate the selective area growth conditions and the 3D GaAs-AlGaAs heterostructures were fabricated into the ridge type and the V-groove type. Scanning micro-photoluminescence $({\mu}-PL)$ measurements and the following analysis revealed that the gradually (adiabatically) coupled 1D-2DEG (electron gas) field effect transistor (FET) system was successfully realized. These 3D-heterostructures are expected to be useful for the realization of high-performance mesoscopic electronic devices and circuits since it makes it possible to form direct ohmic contact onto the (quasi) 1D electron channel.

Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion (InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석)

  • Im, Ik-Tae;Youn, Suk-Bum
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

Realization of 1D-2DEG Composite Nanowire FET by Selective Area Molecular Beam Epitaxy (선택적 분자선 에피택시 방법에 의한 1D-2DEG 혼성 나노선 FET의 구현)

  • Kim, Yun-Joo;Kim, Eun-Hong;Seo, Yoo-Jung;Kim, Dong-Ho;Hahn, Cheol-Koo;Ogura, Mutsuo;Kim, Tae-Geun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.167-168
    • /
    • 2006
  • High quality 3D-heterostructures were constructed by selective area (SA) molecular beam epitaxy (MBE) using a specially patterned GaAs (001) substrate. MBE growth parameters such as substrate temperature, V/III ratio, growth ratio, group V sources ($As_2$, $As_4$) were varied to calibrate the selective area growth conditions. Scanning micro-photoluminescence ($\mu$-PL) measurements and following analysis revealed that the gradually (adiabatically) coupled 2DEG-1D-1DEG field effect transistor (FET) system was realized. This 3D-heterostructure is very promising for the realization of the meso-scopic electronic devices and circuits since it makes it possible to form direct ohmic contact to the (quasi) 1DEG.

  • PDF

Characteristics of selective area growth of GaN/AlGaN double heterostructure grown by hydride vapor phase epitaxy on r-plane sapphire substrate (HVPE 방법에 의해 r-plane 사파이어 기판 위의 선택 성장된 GaN/AlGaN 이종 접합구조의 특성)

  • Hong, S.H.;Jeon, H.S.;Han, Y.H.;Kim, E.J.;Lee, A.R.;Kim, K.H.;Hwang, S.L.;Ha, H.;Ahn, H.S.;Yang, M.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.6-10
    • /
    • 2009
  • In this paper, a selective area growth (SAG) of a GaN/AlGaN double heterostructure (DH) has been performed on r-plane sapphire substrate by using the mixed-source hydride vapor phase epitaxy (HVPE) with multi-sliding boat system. The SAG-GaN/AlGaN DH consists of GaN buffer layer, Te-doped AlGaN n-cladding layer, GaN active layer, Mg-doped AlGaN p-cladding layer, and Mg-doped GaN p-capping layer. The electroluminescence (EL) characteristics show an emission peak of wavelength, 439 nm with a full width at half maximum (FWHM) of approximately 0.64 eV at 20 mA. The I-V measurements show that the turn-on voltage of the SAG-GaN/AlGaN DH is 3.4 V at room temperature. We found that the mixed-source HVPE method with a multi-sliding boat system was one of promising growth methods for III-Nitride LEDs.

Selectively Grown ALGaAs/GaAs Multilayers and InGaAs/GaAs Quantum Wire Structures Grown by Low Pressure MOCVD (선택적 에피 성장법에 의한 GaAs/AIGaAs 다층구조 및 InGaAs/GaAs 양자세선의 성장 및 photoluminescence 연구)

  • 김성일;김영환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2003
  • Using low pressure metalorganic chemical vapor deposition (MOCVD), we have developed selectively area epitaxy (SAE). Using the developed SAE technology, we have grown AlGaAs/GaAs multi layers and InGaAs/GaAs quantum wire structures on the selectively $SiO_2$ masked GaAs substrates. We have obtained triangular shaped AlGaAs/GaAs and InGaAs/GaAs structures with sharp tips and smooth sidewalls. To rod the optimum conditions, several growth parameters such as growth rate, V/III ratio, growth temperature, and direction of the opening stripes were investigated. The emission peak from quantum wires was observed at 975 nm. With increasing of temperature the emission intensity from side wall quantum wells decreased abruptly. But the intensity from Quantum wires decreased slowly compared to that of side wall quantum wells and it became even stronger from above 50 K.

Growth of Triangular Shaped InGaAs/GaAs Quantum Wire Structure with Various Thicknesses in One Chip (여러 가지 높이를 갖는 삼각형 구조 InGaAs/GaAs 양자세선 구조 성장)

  • Kim Seong-Il;Kim Young-Whan;Han Il-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.6
    • /
    • pp.399-401
    • /
    • 2004
  • InGaAs/GaAs quantum wire structures were grown by low pressure metalorganic chemical vapor deposition by using selective area epitaxy.$ In_{ 0.2}$$Ga_{0.8}$ As/GaAs quantum wire structures were grown on a $SiO_2$ masked GaAs substrate. Quantum wire structures with sharp tips and smooth side walls were grown. We have grown InGaAs/GaAs quantum wire structures using variously opened width of the $SiO _2$ mask. Even though the opening widths of $SiO_2$ masked GaAs substrate were different, similar shapes of triangular structures were grown. Using various kinds of differently opened $SiO_2$ masked area, it would be possible to grow quantum wire structures with various thicknesses. The quantum wire structures are formed near the pinnacle of the triangular structure. Therefore, the fabrication of the uniquely designed integrated optical devices which include light emitting sources of multiple wavelength is possible.

Selective Area Epitaxy of GaAs and InGaAs by Ultrahigh Vacuum Chemical vapor Deposition(UHVCVD) (Ultrahigh Vacuum Chemical Vapor Deposition (UHVCVD)법에 의한 GaAs와 InGaAs 박막의 선택 에피택시)

  • 김성복
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.3
    • /
    • pp.275-282
    • /
    • 1995
  • III족 원료 가스로 triethylgallium(TEGa)과 trimethylindium(TMIn)을 사용하고 V족 원료 가스로 사전 열 분해하지 않은 arsine(AsH3)과 monoethylarsine(MEAs)을 사용하여 ultrahigh vacuum chemical vapor deposition(UHVCVD)법으로 Si3N4로 패턴된 GaAs(100)기판 위에 GaAs와 InGaAsqkr막을 선택적으로 에피택시 성장을 하였다. V족 원료 가스를 사전 열 분해하지 않으므로 넓은 성장 온도 구간과 V/lll 비율에서도 선택적으로 박막이 성장되었다. 또한 선택 에피택시의 성장 메카니즘을 규명하기 위하여 다양한 filling factor(전체면적중 opening된 면적의 비율)를 가지는 기판을 제작하여 성장에 사용하였다. UHVCVD법에서는 마스크에 면적중 opening된 면적의 비율)를 가지는 기판을 제작하여 성장에 사용하였다. UHVCVD법에서는 마스크에 입사된 분자 상태의 원료 기체가 탈착된 후 표면 이동이나 가스 상태의 확산과정 없이 마스크로부터 제거되므로 패턴의 크기와 모양에 따른 성장 속도의 변화나 조성의 변화가 없을 뿐만 아니라 chemical beam epitaxy(CBE)/metalorganic molecular beam epitaxy(MOMBE)법에서 알려진 한계 성장온도 이하에서 선택 에피택시 성장이 이루어졌다.

  • PDF

Synthesis and Characterization of One-Dimensional GaN Nanostructures Prepared via Halide Vapor-Phase Epitaxy

  • Byeun, Yun-Ki;Choi, Do-Mun;Han, Kyong-Sop;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.142-146
    • /
    • 2007
  • High-quality one-dimensional GaN nanorods and nanowires were synthesized on Ni-coated c-plan sapphire substrate using halide vapor-phase epitaxy (HVPE). Their structure and optical properties were investigated by X-ray diffraction, scanning and transmission electron microscopy, and photoluminescence techniques. Full substrate coverage of densely packed, uniform, straight and aligned one-dimensional GaN nanowires with a diameter of 80nm were grown at $700{\sim}900^{\circ}C$. The X-ray diffraction patterns, transmission electron microscopic image, and selective area electron diffraction patterns indicate that the one-dimensional GaN nanostructures are a pure single crystalline and preferentially oriented in the [001] direction. We observed high optical quality of GaN nanowires by photoluminescence analysis.