• Title/Summary/Keyword: Selective adsorption

Search Result 212, Processing Time 0.03 seconds

State-selective Dissociation of Water Molecules on MgO Films Using LT-STM

  • Shin, Hyung-Joon;Jung, J.;Motobayashi, K.;Kim, Y.;Kawai, M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.112-112
    • /
    • 2011
  • The interaction of water molecules with solid surfaces has been a subject of considerable interests, due to its importance in the fields from atmospheric and environmental phenomena to biology, catalysis and electrochemistry [1,2]. Among various kinds of surfaces, a lot of theoretical and experimental studies have been performed regarding water on MgO(100), however, to date, there has been no direct observation of water molecules on MgO by scanning tunneling microscope (STM) as compared with those on metal surface. Here, we will present the direct observation and manipulation of single water molecules on ultrathin MgO(100) films using low-temperature scanning tunneling microscope (LT-STM) [3]. Our results rationalize the previous theoretical predictions of isolated water molecules on MgO including the optimum adsorption sites and non-dissociative adsorption of water. Moreover, we were able to dissociate a water molecule by exciting the vibrational mode of water, which is unattainable on metal surfaces. The enhanced residual time of tunneling electrons in molecules on the insulating film is responsible for this unique pathway toward dissociation of water.

  • PDF

Synthesis of Bead Type lon Exchangers and Selective Adsorption Properties of Carbonyl Compounds in Cigarette Mainstream Smoke (비드형 이온교환체의 합성 및 담배 주류연 중 카보닐 화합물의 선택 흡착 특성)

  • Lee, John-Tae;Park, Jin-Won;Rhee, Moon-Soo;Hwang, Keon-Joong;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.74-80
    • /
    • 2005
  • To use the filter materials for reduction of carbonyl compounds in cigarette mainstream smoke, the bead type cation and anion exchangers were synthesized by the suspension polymerization of GMA and DVB followed by the subsequent functionalization with sodium sulfite and diethylamine, respectively. FT-IR/ATR was used to characterize functionalized copolymer formation by sulfonation and amination, and the morphology change of ion exchangers according to the adsorption of cigarette mainstream smoke were observed by SEM. Ion exchange capacity, functionalization yield and adsorption properties of carbonyl compounds in cigarette mainstream smoke were investigated. The highest functionalization yields and ion exchange capacity were obtained at 5 wt% DVB content in co-monomer. The adsorption amount of carbonyl compounds in cigarette mainstream smoke of anion exchanger was higher than that of cation exchanger because of its electron delocalization in carbonyl group. The adsorption efficiency was increased in the presence of moisture. This results indicated that the anion exchanger was applicable for cigarette filter material because of its large ion exchange capacity and rapid ion exchange reaction.

Reconstruction Change of Si(5 5 12) Induced by Selective Bi Adsorption (Bi의 선택적 흡착으로 유도된 Si(5 5 12) 표면의 재구조변화)

  • Cho Sang-Hee;Seo Jae-M.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.152-161
    • /
    • 2006
  • In order to test the capacity of Si(5 5 12) as a potential template for nanowire fabrication, Bi/Si(5 5 12) system has been studied by STM. With Bi deposition, Si(5 5 12) has been transformed to Si(3 3 7) terrace. Initially Bi atoms selectively replace Si-dimers and Si-adatoms with Bi-dimers and Bi-adatoms, respectively. With extended Bi adsorption, Bi-dimers adsorb on the pre-adsorbed Bi-dimers and Bi-atoms. These dimers in the second layer form Bi-dimer pairs having relatively stable $p^3$ bonding, Finally, the Bi-dimer adsorbs on the Bi-dimers in the second layer and saturates. It can be deduced that both surface transformation to (3 3 7) and site-selective Bi adsorption are possible due to substrate-strain relaxation through inserting Bi atoms into subsurface of Si substrate.

Selective Removal of Calcium Ions from a Mixed Solution using Membrane Capacitive Seionization System (막결합 축전식 탈염장치를 이용한 혼합용액에서 칼슘이온의 선택적 제거)

  • Kim, Yu-Jin;Choi, Jae-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.474-479
    • /
    • 2012
  • Possibility of the selective removal of $Ca^{2+}$ ions from a mixed solution of $Na^{+}$ and $Ca^{2+}$ ions using membrane capacitive deionization (MCDI) was investigated. Adsorption equilibrium experiments were conducted to determine the selectivity of the CMX cation-exchange membrane toward $Ca^{2+}$ ions. In addition, desalination experiments for a mixed solution (5 meq/L NaCl + 2 meq/L $CaCl_{2}$) were performed using an MCDI cell. The adsorption equilibrium of CMX membrane showed that the equivalent fraction of $Ca^{2+}$ ions in the solution and the CMX membrane were 28.6 and 87.2%, respectively, which indicates the CMX membrane's high selectivity toward $Ca^{2+}$ ions. Desalination experiments were performed by applying a constant current to the MCDI cell until the cell potential reached 1.0 V. The amount of ions adsorbed did not significantly change as the applied current was changed. However, the equivalent fractions of $Ca^{2+}$ ions among the adsorbed ions were inversely proportional to the applied currents: 81.4, 78.4, 77.0, and 74.5% at 200, 300, 500, and $700\;A/m^{2}$ of applied current density, respectively. This result is attributed to the increased fraction of $Ca^{2+}$ ions adsorbed by the CMX membrane at lower applied current densities.

Preparation and characterization of Environmental Functional Nanofibers by electrospun nanofibers-Dry sorption material for indoor CO2 capture (정전방사를 통한 환경기능성 미세섬유 제조 및 특성분석 - 실내환경 CO2 포집용 건식흡착소재)

  • Kim, Eun Joo;Park, Kyung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.938-943
    • /
    • 2018
  • Thin nano-sized fibres were prepared by an electrospinning method. The spinning appratus consisted of pump for polymer injection, nozzle and nozzle rotus, and an aluminum plate collected the polymer fibers. Its surface was chemically modified for selective improved adsorption of carbon monoxide at indoor level. The chemical activation enabled to form the fibres 250-350 nm in thickness with pore sizes distributed between 0.6 and 0.7 nm and an average specific surface area of $569m^2/g$. The adsorption capacities of pure (100%) and indoor (0.3%) $CO_2$, of which level frequently appears, at the ambient condition were improved from 1.08 and 0.013 to 2.2 and 0.144 mmol/g, respectively. It was found that the adsorption amount of $CO_2$ adsorbed by the chemically activated carbon nanofiber prepared through chemical activation would vary depending on the ratio of specific surface area and micropores. In particular, chemical interaction between adsorbent surface and gas molecules could enhance the selective capture of weak acidic $CO_2$.

Selective Trace Analysis of Mercury (II) Ions in Aqueous Media Using SERS-Based Aptamer Sensor

  • Lee, Chank-Il;Choo, Jae-Bum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2003-2007
    • /
    • 2011
  • We report a highly sensitive surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of mercury (II) ions in drinkable water using aptamer-conjugated silver nanoparticles. Here, an aptamer designed to specifically bind to $Hg^{2+}$ ions in aqueous solution was labelled with a TAMRA moiety at the 5' end and used as a Raman reporter. Polyamine spermine tetrahydrochloride (spermine) was used to promote surface adsorption of the aptamer probes onto the silver nanoparticles. When $Hg^{2+}$ ions are added to the system, binding of $Hg^{2+}$ with T-T pairs results in a conformational rearrangement of the aptamer to form a hairpin structure. As a result of the reduced of electrostatic repulsion between silver nanoparticles, aggregation of silver nanoparticles occurs, and the SERS signal is significantly increased upon the addition of $Hg^{2+}$ ions. Under optimized assay conditions, the concentration limit of detection was estimated to be 5 nM, and this satisfies a limit of detection below the EPA defined limit of 10 nM in drinkable water.

K and Cs Doped Ag/Al2O3 Catalyst for Selective Catalytic Reduction of NOx by Methane

  • Rao, Komateedi N.;Yu, Chang-Yong;Lack, Choi-Hee;Ha, Heon-Phil
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.510-516
    • /
    • 2011
  • In the present study, potassium and caesium doped Ag/$Al_2O_3$ catalysts were synthesized by simple wet impregnation method and evaluated for selective catalytic reduction (SCR) of NOx using methane. TEM analysis and diffraction patterns demonstrated the finely dispersed Ag particles. BET surface measurements reveal that the prepared materials have moderate to high surface area and the metal amount found from ICP analysis was well matching with the theoretical loadings. The synthesized K-Ag/$Al_2O_3$ and Cs-Ag/$Al_2O_3$ catalysts exhibited a promotional effect on deNOx activity in the presence of $SO_2$ and $H_2O$. The long-term isothermal studies at $550^{\circ}C$ under oxygen rich condition showed the superior catalytic properties of the both alkali promoted samples. The crucial catalytic properties of materials are attributed to NO adsorption properties detected by the NO TPD.

High-Efficiency Dye-Sensitized Solar Cells by Extended Spectral Response Utilizing Dye Selective Positioning Method

  • Lee, Do-Gwon;Park, Se-Ung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12.1-12.1
    • /
    • 2010
  • We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO2 layer through selective desorption and adsorption processes. Only upper part of the first adsorbed N719 dye was selectively removed by the desorption solution formulated with polypropylene glycol and tetrabutylammonium hydroxide without any damages of the dye. The desorption depth was controlled by the number of desorption process. Multi-dyed dye-sensitized solar cells (MDSSC) were fabricated by utilizing the method and their photovoltaic properties were investigated. From the incident photon-to-current conversion efficiency (IPCE) measurement, it was found that the MDSSC exhibited the extended spectral response for the solar spectrum while without decrease of maximum IPCE value compare to the DSSCs using one kind of dye (N719 or N749). The highest photocurrent density of 19.3 mA/cm2 was obtained from the MDSSC utilizing $15\;{\mu}m$ N719 / $14\;{\mu}m$ N749 bi-layered mesoporous TiO2 film. The photocurrent density was 25% and 8% higher than that of the DSSC using only N719 and N749 dye as a sensitizer, respectively. The power conversion efficiency of 9.8% was achieved from the MDSSC under the AM 1.5G one sun illumination.

  • PDF

A Study on the Characteristics of the Functional Groups of the Alkanethiol Molecules in UV Laser Photochemical Patterning and Wet Etching Process (UV Laser를 이용한 광화학적 패터닝과 습식에칭에 따른 알칸티올 분자 작용기의 특성 연구)

  • Huh, Kab-Soo;Chang, Won-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.5
    • /
    • pp.104-109
    • /
    • 2007
  • Photochemical patterning of self-assembled mono layers (SAMs) has been performed by diode pumped solid state (DPSS) 3rd harmonic Nd:$YVO_4$ laser with wavelength of 355 nm. SAMs patternings of parallel lines have subsequently been used either to generate compositional chemical patterns or fabricate microstructures by a wet etching. This paper describes a selective etching process with patterned SAMs of alkanetiolate molecules on the surface of gold. SAMs formed by the adsorption of alkanethiols onto gold substrate employs as very thin photoresists. In this paper, the influence of the interaction between the functional group of SAMs and the etching solution is studied with optimal laser irradiation conditions. The results show that hydrophobic functional groups of SAMs are more effective for selective chemical etching than the hydrophilic ones.

Synthesis and Formation Mechanism of ZnO Nanotubes via an Electrochemical Method (전기화학적 방법에 의한 산화아연 나노튜브의 합성과 형성 기구)

  • Moon, Jin Young;Kim, Hyunghoon;Lee, Ho Seong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.5
    • /
    • pp.400-405
    • /
    • 2011
  • ZnO nanotube arrays were synthesized by a two-step process: electrodeposition and selective dissolution. In the first step, ZnO nanorod arrays were grown on an Au/Si substrate by using a homemade electrodeposition system. ZnO nanorod arrays were then selectively dissolved in an etching solution composed of 0.125 M NaOH, resulting in hollow ZnO nanotube arrays. It is suggested that the formation mechanism of the ZnO nanotube arrays might be attributed to the preferred surface adsorption of hydroxide ion ($OH^{-1}$) on a positive polar surface followed by selective dissolution of the metastable Zn-terminated ZnO (0001) polar surface caused by the difference in the surface energy per unit area between the ZnO nanorod and nanotube.