The selective harmonic elimination pulse width modulation (SHEPWM) switching strategy has been applied to multilevel inverters to remove low harmonics. Naturally, the related equations do not have feasible solutions for some operating points associated with the modulation index (M). However, with these infeasible points, minimizing instead of eliminating harmonics is performed. Thus, harmful harmonics such as the $5^{th}$ harmonic still remains in the output waveform. Therefore, it is proposed in this paper to ignore solving the equation associated with the highest order harmonics. A reduction in the eliminated harmonics results in an increase in the degrees of freedom. As a result, the lower order harmonics are eliminated in more operating points. A 9-level inverter is chosen as a case study. The genetic algorithm (GA) for optimization purposes is used. Simulation results verify the proposed method.
This paper presents a novel reconfigurable selective harmonic elimination technique to control harmonics over a wide range of Modulation Indexes (MI) in Multi-Level Inverter (MLI). In the proposed method, the region of the MI is divided into various sectors and expressions are formulated with different switching patterns for each of the sectors. A memetic BBO-MAS (Biogeography Based Optimization - Mesh Adaptive direct Search) optimization algorithm is proposed for solving the Selective Harmonic Elimination - Pulse Width Modulation (SHE-PWM) technique. An experimental prototype is developed using a Field Programmable Gate Array (FPGA) and their FFT spectrums are analyzed over a wide range of MI using a fluke power logger. Simulation and experimental results have validated the performance of the proposed optimization algorithms and the reconfigurable SHE-PWM technique. Further, the sensitivity of the harmonics has been analyzed considering non-integer variations in the magnitude of the input DC sources.
This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.
Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
Journal of Power Electronics
/
v.18
no.6
/
pp.1650-1658
/
2018
Multilevel converters are being widely used in medium-voltage high-power applications including motor drive systems, utility power transmission, and distribution systems. Selective harmonic elimination (SHE) is a well-known modulation method to generate high quality output voltage waveforms. This paper presents a new simple practical method for generating a generalized five-level waveform without selected low order harmonics. This method is based on a phase-shifted expression for the SHE problem, which can analytically calculate the exact values of switching angles and the feasible modulation index range for three-level and five-level waveforms. The proposed method automatically determines the number of transitions between levels and generates proper output waveform without solving complex trigonometric equations. Due to the simplicity of the computational burden, the real-time implementation of the proposed algorithm can be performed by a simple processor. Simulation and experiment results verify the correctness and effectiveness of the proposed method.
High-power three-level voltage-source converters are widely utilized in high-performance AC drive systems. In several ultra-power instances, the harmonics on the grid side should be reduced through multiple rectifications. A combined harmonic elimination method that includes a dual primary-side series-connected winding transformer and selective harmonic elimination pulse-width modulation is proposed to eliminate low-order current harmonics on the primary and secondary sides of transformers. Through an analysis of the harmonic influence caused by dead time and DC magnetic bias, a synthetic compensation control strategy is presented to minimize the grid-side harmonics in the dual primary side series-connected winding transformer application. Both simulation and experimental results demonstrate that the proposed control strategy can significantly reduce the converter input current harmonics and eliminates the DC magnetic bias in the transformer.
In this paper an improved low frequency selective harmonic elimination-PWM (SHE-PWM) technique for Cascaded H-bridge (CHB) converters is proposed. The proposed method is able to eliminate low order harmonics from the output voltage of the converter for a wide range of modulation indices. To solve SHE-PWM equations, especially for low modulation indices, a modified method is used which employs either the positive or negative voltage polarities of H-bridge cells to increase the freedom degrees of each cell. Freedom degrees of the switching angles are also used to increase the range of available solutions for non-linear SHE equations. The proposed SHE methods can successfully eliminate up to $25^{th}$ harmonic from a 7-level output voltage by using just nine switching transitions or a 150 Hz switching frequency. To confirm the validity of the proposed method, simulation and experimental results have been presented.
The paper proposes a method to eliminate harmonics of PWM inverter fed induction motor system using Walsh series. In other words, this paper presents technique of the selective harmonics elimination(SHE) by W-FT series in three phase PWM inverter output waveform. A microprocessor(8086 CPU) - controlled three phase induction motor system in order to verify this algorithm is present. It is designed for a three output voltage in the 1$\sim$60 Hz inverter with the 5th and 7th harmonics, 5th, 7th, 11th, and 13th, harmonics eliminated, and with the fundamental wave amplitude proportional to the output frequency. In the PWM inverter, dead time circuit is inserted in the switching si gnats to prevent the de link shortage. This paper is deals with quantative prediction of dead-time effect and its compensation in PWM inverters. The performance of the compensation circuits is confirmed by the experiment.
Modern power systems driven by high-power converters have become inevitable in view of the ever increasing demand for electric power. The total power loss can be reduced by limiting the switching losses in such power converters; increased power efficiency can thus be achieved. A reduced switching frequency that is less than a few hundreds of hertz is applied to power converters that produce output waveforms with high distortion. Selective harmonic elimination pulse width modulation (SHEPWM) is an optimized low switching frequency pulse width modulation method that is based on offline estimation. This method can pre-program the harmonic profile of the output waveform over a range of modulation indices to eliminate low-order harmonics. In this paper, a SHEPWM scheme for three-phase three-leg neutral point clamped inverter is proposed. Aside from eliminating the selected harmonics, the DC capacitor voltages at the DC bus are also balanced because of the symmetrical pulse pattern over a quarter cycle of the period. The technique utilized in the estimation of switching angles involves the firefly algorithm (FA). Compared with other techniques, FA is more robust and entails less computation time. Simulation in the MATLAB/SIMULINK environment and experimental verification in the very large scale integration platform with Spartan 6A DSP are performed to prove the validity of the proposed technique.
The Transactions of the Korean Institute of Electrical Engineers B
/
v.48
no.12
/
pp.691-700
/
1999
This paper proposes a novel switching strategy of 1Mvar STATCON using cascade multilevel H-bridge inverter(HBI) for FACTS application. To control the reactive power instantaneously, the d-q dynamic system model is described and analyzed. A single pulse pattern based on the SHEM(Selective Harmonic Elimination Method) technique is determined from the look-up table to reduce the line current harmonics and a rotating fundamental frequency switching scheme is presented to adjust the DC voltage of each inverter capacitor at the same value. So the voltage unbalance problem between separately DC bus voltage is improved by using the proposed switching scheme. As a result, the presented inverter configuration not only reduces the system complexity by eliminating the isolation at the AC input side transformer but also improves the dynamic response to the step change of reactive power.
Fekari, Seyyed Amir;Iranaq, Ali Reza Marami;Sabahi, Mehran
Journal of international Conference on Electrical Machines and Systems
/
v.3
no.3
/
pp.305-311
/
2014
In this paper, a new switching pattern is presented for multilevel inverters. With changing off-angel of each switch, the on time interval of all switches will approximately be equal and then the lifetime of inverter will increase, also using this method can reduce electrical stress on switches in higher levels of inverter. Switching angels as for desired modulation index are calculated using genetic algorithm whereas selective harmonics are controlled within the allowable range. The computed angels are simulated in Matlab/Simulink for respective circuits to validate the results.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.