• Title/Summary/Keyword: Selection model

Search Result 4,100, Processing Time 0.031 seconds

Development of An Optimal Routes Selection Model Considering Price Characteristics of Agricultural Products (농산물의 가격특성을 고려한 최적경로 선정모델 개발)

  • Suh, Kyo;Lee, Jeong-Jae;Huh, Yoo-Man;Kim, Han-Joong;Yi, Ho-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.121-131
    • /
    • 2004
  • Transportation and logistics of agricultural products have been one of the major interests of many researches. Most of researches have been limited to presuming these as a first dimensional process or considering only economic value of agricultural products at each stage of logistics. However, the particular characteristics of agricultural products, such as quality change during transportation or extensively scattered origins, require examining these problems as a whole system. Network model has been adopted to represent nodes, which stand for spatial location of demand and supply of agricultural products, and communication between these nodes. Based on network theory and advanced marketing potential function, an optimal routes selection model is developed. The model employed network simplex method for routes optimization. The application of the model focused on transportation network organization to reflect different market prices for different locations and resulted in optimum routes and profit improvement of the applied agricultural product.

Drought forecasting over South Korea based on the teleconnected global climate variables

  • Taesam Lee;Yejin Kong;Sejeong Lee;Taegyun Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.47-47
    • /
    • 2023
  • Drought occurs due to lack of water resources over an extended period and its intensity has been magnified globally by climate change. In recent years, drought over South Korea has also been intensed, and the prediction was inevitable for the water resource management and water industry. Therefore, drought forecasting over South Korea was performed in the current study with the following procedure. First, accumulated spring precipitation(ASP) driven by the 93 weather stations in South Korea was taken with their median. Then, correlation analysis was followed between ASP and Df4m, the differences of two pair of the global winter MSLP. The 37 Df4m variables with high correlations over 0.55 was chosen and sorted into three regions. The selected Df4m variables in the same region showed high similarity, leading the multicollinearity problem. To avoid this problem, a model that performs variable selection and model fitting at once, least absolute shrinkage and selection operator(LASSO) was applied. The LASSO model selected 5 variables which showed a good agreement of the predicted with the observed value, R2=0.72. Other models such as multiple linear regression model and ElasticNet were also performed, but did not present a performance as good as LASSO. Therefore, LASSO model can be an appropriate model to forecast spring drought over South Korea and can be used to mange water resources efficiently.

  • PDF

Evolutionary Genetic Models of Mental Disorders (정신장애의 진화유전학적 모델)

  • Park, Hanson
    • Korean Journal of Biological Psychiatry
    • /
    • v.26 no.2
    • /
    • pp.33-38
    • /
    • 2019
  • Psychiatric disorder as dysfunctional behavioural syndrome is a paradoxical phenomenon that is difficult to explain evolutionarily because moderate prevalence rate, high heritability and relatively low fitness are shown. Several evolutionary genetic models have been proposed to address this paradox. In this paper, I explain each model by dividing it into selective neutrality, mutation-selection balance, and balancing selection hypothesis, and discuss the advantages and disadvantages of them. In addition, the feasibility of niche specialization and frequency dependent selection as the plausible explanation about the central paradox is briefly discussed.

Bayesian Model Selection for Inverse Gaussian Populations with Heterogeneity

  • Kang, Sang-Gil;Kim, Dal-Ho;Lee, Woo-Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.2
    • /
    • pp.621-634
    • /
    • 2008
  • This paper addresses the problem of testing whether the means in several inverse Gaussian populations with heterogeneity are equal. The analysis of reciprocals for the equality of inverse Gaussian means needs the assumption of equal scale parameters. We propose Bayesian model selection procedures for testing equality of the inverse Gaussian means under the noninformative prior without the assumption of equal scale parameters. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian model selection procedures based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and real data analysis are provided.

  • PDF

Identification of Topological Entities and Naming Mapping for Parametric CAD Model Exchanges

  • Mun, Duh-Wan;Han, Soon-Hung
    • International Journal of CAD/CAM
    • /
    • v.5 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • As collaborative design and configuration design gain increasing importance in product development, it becomes essential to exchange parametric CAD models among participants. Parametric CAD models can be represented and exchanged in the form of a macro file or a part file that contains the modeling history of a product. The modeling history of a parametric CAD model contains feature specifications and each feature has selection information that records the name of the referenced topological entities. Translating this selection information requires solving the problems of how to identify the referenced topological entities of a feature (persistent naming problem) and how to convert the selection information into the format of the receiving CAD system (naming mapping problem). The present paper introduces the problem of exchanging parametric CAD models and proposes a solution to naming mapping.

Bayesian Hierarchical Model with Skewed Elliptical Distribution

  • Chung Younshik
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.5-12
    • /
    • 2000
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. We consider hierarchical models including selection models under a skewed heavy tailed error distribution and it is shown to be useful in such Bayesian meta-analysis. A general class of skewed elliptical distribution is reviewed and developed. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierarchical selection model and use Markov chain Monte Carlo methods to develop inference for the parameters of interest.

  • PDF

Concurrent Methodology for Part Selection, Loading, and Routing Mix problems in Flexible Manufacturing System (자동생산시스템(FMS)의 통합생산계획에 관한 연구)

  • Ro, In-Kyu;Jung, Dae-Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.20 no.2
    • /
    • pp.19-30
    • /
    • 1994
  • Generally, a planning problem in a flexible manufacturing system is considered to be a composite of three interdependent tasks : part selection, loading, and routing mix. This research presents a mathematical model which can concurrently solve part selection, loading, and routing mix problems, so the problems that are caused by treating the planning problems independently are solved. The mathematical model is aimed to minimize system unbalance and the number of late parts, including constraints such as machine capacity, tool magazine capacity, and tool inventory. To illustrate the application of the model, an example is included. Solution procedure based on Lagrangian relaxation is also suggested for larger-sized problems.

  • PDF

An Integrated Mathematical Model for Supplier Selection

  • Asghari, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • Extensive research has been conducted on supplier evaluation and selection as a strategic and crucial component of supply chain management in recent years. However, few articles in the previous literature have been dedicated to the use of fuzzy inference systems as an aid in decision-making. Therefore, this essay attempts to demonstrate the application of this method in evaluating suppliers, based on a comprehensive framework of qualitative and quantitative factors besides the effect of gradual coverage distance. The purpose of this study is to investigate the applicability of the numerous measures and metrics in a multi-objective optimization problem of the supply chain network design with the aim of managing the allocation of orders by coordinating the production lines to satisfy customers' demand. This work presents a dynamic non-linear programming model that examines the important aspects of the strategic planning of the manufacturing in supply chain. The effectiveness of the configured network is illustrated using a sample, following which an exact method is used to solve this multi-objective problem and confirm the validity of the model, and finally the results will be discussed and analyzed.

A Bayesian Method for Narrowing the Scope fo Variable Selection in Binary Response t-Link Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.4
    • /
    • pp.407-422
    • /
    • 2000
  • This article is concerned with the selecting predictor variables to be included in building a class of binary response t-link regression models where both probit and logistic regression models can e approximately taken as members of the class. It is based on a modification of the stochastic search variable selection method(SSVS), intended to propose and develop a Bayesian procedure that used probabilistic considerations for selecting promising subsets of predictor variables. The procedure reformulates the binary response t-link regression setup in a hierarchical truncated normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. In this setup, the most promising subset of predictors can be identified as that with highest posterior probability in the marginal posterior distribution of the hyperparameters. To highlight the merit of the procedure, an illustrative numerical example is given.

  • PDF

Evolutionary Algorithm for Process Plan Selection with Multiple Objectives

  • MOON, Chiung;LEE, Younghae;GEN, Mitsuo
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.2
    • /
    • pp.116-122
    • /
    • 2004
  • This paper presents a process plan selection model with multiple objectives. The process plans for all parts should be selected under multiple objective environment as follows: (1) minimizing the sum of machine processing and material handling time of all the parts considering realistic shop factors such as production volume, processing time, machine capacity, and capacity of transfer device. (2) balancing the load between machines. A multiple objective mathematical model is proposed and an evolutionary algorithm with the adaptive recombination strategy is developed to solve the model. To illustrate the efficiency of proposed approach, numerical examples are presented. The proposed approach is found to be effective in offering a set of satisfactory Pareto solutions within a satisfactory CPU time in a multiple objective environment.