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Abstract.  This paper presents a process plan selection model with multiple objectives. The process plans for 
all parts should be selected under multiple objective environment as follows: (1) minimizing the sum of machine 
processing and material handling time of all the parts considering realistic shop factors such as production 
volume, processing time, machine capacity, and capacity of transfer device. (2) balancing the load between 
machines. A multiple objective mathematical model is proposed and an evolutionary algorithm with the adaptive 
recombination strategy is developed to solve the model. To illustrate the efficiency of proposed approach, 
numerical examples are presented. The proposed approach is found to be effective in offering a set of 
satisfactory Pareto solutions within a satisfactory CPU time in a multiple objective environment, 
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1.  INTRODUCTION 

Process planning is an activity for the preparation of 
a plan that specifies the machines, operations, operation 
sequence, machining conditions, and tools required to 
produce that component. Process planning is the critical 
link between design and manufacturing, both of which 
need this indispensable interface [5]. Computer-aided 
process planning (CAPP) is a computerized system for 
the process planning. During the past two decades, a 
number of CAPP systems have been developed for the 
automated planning and improving the efficiency of 
process planning function. Examples of such systems are 
TOM [8], TURBO-CAPP [11] and KAPLAN [4]. 

The implementation of CAPP depends on the 
development and application of various decision logic, 
database structure and management, computer programming 
and intelligent searching methodologies, etc. And, the 
development of a high-level CAPP system must be based 

on not only the thorough understanding of process 
planning principles and methodologies, but also the 
dynamic information of shop floor and CAD department.  

Process plan selection (PPS) is one of the problems 
linking the process planning with the production planning 
and control problem are the problem of selecting process 
plans. Typically, for a part to be manufactured in a 
modern manufacturing system, multiple process plans are 
generated [9]. The process planners face the problem of 
selecting from the set of process plans a subset of process 
plans with the minimum corresponding costs. For this 
problem, Kusiak and Finke [7] developed a model for the 
selection of a set of process plans with the objective of 
minimizing the manufacturing cost and the number of 
tools and auxiliary devices used. Heuristic procedures 
have also been developed to solve the model.  

Bhaskaran [2] presented a model for the selection of 
process plans with the objective of minimizing the total 
processing time and the total number of processing steps. 
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Zhang and Huang [12] provided a fuzzy-based model for 
the selection of a set of process plans considering the 
imprecise information of shop floor. Awadh et al. [1] 
developed a model based on genetic algorithm (GA) for 
the selection of process plan for a part. More recently, Seo 
and Egbelu [9] developed a 0-1 integer programming 
model for the PPS problem based on the product mix and 
production volume with the objective of the minimizing 
total material handling and processing time. They solved 
the problem using tabu search heuristic.  

In this paper, a new model is presented for the 
selection of a set of process plans with multiple objectives 
of minimizing the total processing and transportation time 
and balancing the load between machines. The model in 
this paper differs from those of the above papers as 
follows: (1) The model considers the operation flexibility. 
This flexibility is concerned with the possibility of 
performing an operation on more than one machine, that 
is, an operation may be performed on alternative 
machines with the different processing time. (2) The 
transportation time between machines and the related 
shop factors are considered. (3) The load balance between 
machines is considered. To solve the proposed model, an 
evolutionary algorithm with the adaptive recombination 
strategy is also developed.  

2.  PROBLEM STATEMENT 

Several part types are usually manufactured simultaneously 
in batches, one process plan for each part needs to be 
selected with considering shop factors such as production 
volume, processing time, machine capacity and 
transportation time. A machine is capable of performing 
several types of operations, and an operation can be 
performed on alternative machines. The introduction of 
flexibility in process planning makes it somewhat easier 
for machine sequencing to adapt to a changing 
manufacturing environment. An example of the operation 
flexibility is shown in Figure 1. In this Figure, the part has 
3 alternative process plans for processing of operations. 
The alternatives are (M3, M1, M4, M5, M3, M2, M4, M5) and 
(M3, M2, M1, M4.). In these alternatives, only one process 
plan is selected for the part.  

Automated guided vehicles (AGV) system is used 

for material handling between machines. The AGV has 
played a significant role in several kinds of modern 
manufacturing systems by integrating different planning 
functions as a unified system. In the process plan selection, 
parts may have a choice between one or more machines at 
each of their operation stages, and transportation of the 
parts within the system is handled by an AGV system. 
The total transportation time is expressed by the sum of 
the frequency of movements for handling all parts.  

The load balance for machines is one of the 
important issues. The load on each machine is contributed 
by those operations assigned to it. Therefore, the process 
plans with unbalanced loads may result in system 
bottlenecks on the overloaded machine [9].  

For developing a model, we consider a multiple 
objective environment. Though there are several important 
objectives associated with the process plan selection, 
explicit consideration of too many objectives is difficult. 
Hence, we limit our scope to two objectives as follows: 

 
(1) Minimize the total processing and transportation 

time for producing the part mix 
(2) Minimize the load variation between machines 
 

The problem involves the selection of individual 
process plan for each part from their competing process 
plans and the decision of available machine for operations. 
The total time is affected by the combination of process 
plan selected for producing the parts. Therefore, the 
process plan selection in this paper is to find optimum 
selection of process plans for all the parts and to minimize 
the load variation for the smooth flow of materials within 
a manufacturing system.  

3. MODEL DEVELOPMENT 

In order to formulate a PPS model, the following 
notations are introduced: 

i     part  (i = 1, 2, 3, …, np)  
j     operation (j = 1, 2, 3, …, noi) 
k, l   machine (k, l = 1, 2, 3, …, nt) 
ptijk   unit processing time to perform operation j of 

part type i using machine  
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M4 M5 

M1 M4 

O1 
O2 

O2 

O3 

O3 

O3 

O4 

O4 
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Figure 1. An example of operation flexibility 
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kpvi  production volume for part type i 
cmk  maximum available time of machine k 
tmkl  transportation time from machine k to l 
abl  available capacity of AGV per trip 
twk   load in machine k   

       twk  = 
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3.1  Objective Functions 

The problem is concerned with the selection of 
individual process plans for all parts while minimizing the 
total processing and transportation time. The sum of 
processing time (f1) for all part is determined by the 
production volume of the parts to be processed and the 
processing time associated with operations. The total time 
is defined as follows: 

f1 =∑∑∑
= = =

⋅⋅
np

i
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j

nt

k
ijkijki

i

xptpv
1 1 1

        ( 1 ) 

For the definition of transportation time, nikl, the 
number of trips between machines k and l for part type i, 
can be calculated as follows: 

nikl = sikl  × 
pv
abl

i⎡
⎢⎢

⎤
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             ( 2 ) 

where the ⎡ ⎤w  means the minimum integer value 
more than or equal to w. tikl, transportation time between 
machines k and l for part type i, can be calculated as 
follows: 

tikl = nikl × tmkl               ( 3 ) 

Therefore, the total transportation time associated 
with process plans for all parts is defined as follows: 
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Consequently, the objective function to minimize the 
total processing and transportation time can be formulated 
as follows: 

F1 = f1 + f2                 ( 5 ) 

The second objective function (F2) for balancing the 
load between machines can be formulated as follows: 
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       ( 6 ) 

3.2  Bicriteria Mathematical Model 

The overall mathematical model can be formulated 
as follows: 

Min F1  
Min F2  
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 xijk  = {0, 1} , ∀( , , )i j k        ( 10 ) 

 
The operation flexibility means that an operation can 

be performed on alternative machines with different 
processing time. The first constraint ensures that only one 
machine is selected for each operation of a part type. For 
the machining of part types, several machines are used. 
The total processing time within a machine is less than or 
equal to one's available time. This constraint can be 
expressed as Equation (8). Sometimes, several operations 
can be concentrated on a special machine. This is a cause 
of overload at any machine. Thus, we can include a 
constraint to prevent the overload at each machine and for 
the load balancing of all machines. The constraint is given 
as Equation (9).   

There is no unique optimal for the above 
mathematical model with conflicting objectives. Instead, 
a set of best or satisfactory solutions will have been found 
in the two-dimensional feasible area. To solve this 
problem efficiently, a GA based approach is developed in 
the next section. 

4.  GENETIC ALGORITHM APPROACH 

GA is an evolutionary search algorithms based on 
the principles of natural genetics and genetic selection. It 
is one of the suitable methodologies to solve the large 
scale and complex engineering design problems [3]. So, 
the GA that has been used to solve many NP-complete 
problems, can also be applied to the process sequencing 
problem. GA starts with a set of initial solutions called 
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population, and the individual of population is called 
chromosome. The chromosome is evaluated by some 
fitness measures through successive iterations. The key 
operators of GA are crossover, mutation, and selection 
operator. These operators for generating new chromosomes 
play an important role in GA. 

 4.1  Representation and Initialization 

In the PPS, each part type has a set of operations and 
a machine can be selected for an operation. Therefore, a 
gene of chromosome should contain the information of 
selected machine standing for each operation. A 
chromosome representation defined as a set of operations 
for all the parts is shown as follows:  

Part 1 Part 2 Part 3…Part np 

[ 4231 34nt231 342nt1…4561 ]  

In this chromosome, the number of elements for 
each part means the number of operations and the 
assigned values to the elements mean machine number 
for the machining of operations. For example, for a PPS 
problem with three parts, five machines and the number 
of operations for the parts are five constantly, a 
chromosome can be represented as follows: 

[ 45132 53245 52431] 

where [4 5 1 3 2] stands for the process plan of part 
1, [5 3 2 4 5] stands for part 2, and [5 2 4 3 1] stands for 
part 3. The initial population of chromosomes is 
generated randomly within the range [1, nt].  

4.2  Pareto Solution 

As the evaluation function for survival, the weighted 
sums method is used to construct the fitness function 
which multiple objective functions F1 (Ck) and F2 (Ck) are 
combined into one overall objective function at hand. The 
fitness function is handled in the following way.  
 

(1) At generation t, choose the solution points which 
contain the minimum F1

min  (or F1
max ) and F2

max  
(or F2

min ) corresponding to each objective function, 
then compare with the stored solution points at the 
previous generation and select the best points to store 
again.  
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where F Fq
t

q
tmax( ) min( )( )  is the maximum (minimum) 

value of objective function q at generation t. And i_size is 
the number of individuals on current generation, i.e. the 

sum of population and generated offspring. 
(2) Solve the following equations to get weights for 

evaluation function:  
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(3) Calculate the fitness value for each chromosome(Ck) 
as follows: 

eval C w F C w F Ck k k( ) ( ) ( )= +1 1 2 2       (11) 

In multiple objective optimization context, usually 
the Pareto optimal solutions are characterized as the 
solutions of the multiple objective decision making 
problem. In this stage, the module for Pareto optimal 
solutions consists of two steps: 
(1) evaluate chromosomes by the objective function, and 
(2) select Pareto solutions based on evaluation values. 

It is illustrated as follows: 
Module for Pareto optimal solutions: 
begin 
for generation index t = 0 to max_gen; 
count the number of chromosomes from generated 

offspring off_size: 
chr_size  pop_size + off_size; 
for k = 1 to chr_size;  
evaluate a chromosome Ck ; 
obtain the solution vector F [ ( ), ( )]k k kF C F C= 1 2 ; 
register Pareto optimal solutions and delete 

non-Pareto solutions;  
endfor 
endfor 
end 

4.3  Recombination Strategy 

For the recombination, we revised the adaptive 
scheme drawn from the study of Srinivas and Patnaik [10]. 
This scheme considers both the exploitation and 
exploration properties in the convergence process of GA; 
the capacity to converge at an optimum after locating the 
region containing the optimum, and the capacity to 
explore new regions of the solution space in the search of 
the global optimum. The balance between these 
characteristics of the GA is adaptively regulated by the 
values of crossover rate ( Cp ) and mutation rate ( mp ) at 
each generation: increasing the values of Cp and mp  
promotes exploration at the expense of exploitation. By 
this basic scheme, Cp  and mp  are increased when the 
population tends to get stuck at a local optimum and are 
decreased when the population is scattered in the search 
space of the GA. The detailed scheme for a minimization 
problem is as follows: 
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where maxf  and avgf are the maximum fitness and 
average fitness values at each generation, respectively, 

crof  is the larger of the fitness values of the individuals 
to be crossed, and mutf  is the fitness value of the ith 
individual to which the mutation with a rate mp is 
applied. The values of ,,, 321 ααα and 4α  are 1, 0.5, 1, 
and 0.5, respectively.  

The adjusted rates should not exceed the range from 
0.5 to 1.0 for the Cp and the range from 0.00 to 0.05 for 
the mp . 

5.  NUMERICAL EXAMPLES 

We now demonstrate the proposed approach for 

solving the process plan selection with two examples. 
First, a system with 4 machines and 4 part types is 
considered. The part types 1, 2, 3 and 4 have 6, 4, 5 and 4 
operations respectively. The machining data is given in 
Table 1. 

In Table 2, the transportation time between machines 
by AGV is given. 

The GA is implemented on IBM/PC compatible with 
Pentium 133. The GA is applied with the parameters as 
follows: max_gen=1000 and pop_size=100. In this 
parameters setting, 7 Pareto solutions are always obtained 
and their corresponding best chromosomes as shown in 
Figure 2.  

These Pareto solutions are found after running 
average 21 generations with population size 100. This 
means that only 2100 calls (generation times by best 
solution × population size) of the fitness function are 
required to find the whole set of Pareto solutions. The 
average CPU time taken to solve the first example is 13 
seconds. These indicate the remarkable effectiveness of 
the proposed approach. The Pareto frontier is illustrated in 
Figure 3.  

 
Table 1. Machining data for the first example 

 P1 P2 P3 P4 MATk 

        Oj 
  Mk 

1 2 3 4 5 6 1 2 3 4 1 2 3 4 5 1 2 3 4  

1 7 -- 3 -- 8 5 4 7 6 5 -- 5 2 7 8 7 -- 7 3 1500 
2 8 3 -- 6 2 8 7 5 -- 4 4 7 2 -- 3 3 7 4 -- 1700 
3 -- -- 5 5 6 4 6 4 7 7 7 4 5 3 2 4 3 5 8 1800 
4 5 2 7 9 5 3 3 8 6 8 4 5 3 7 3 7 -- 7 3 1400 

PVi 50 52 48 55  
Oj: operations for each part  Mk : machines  PVi : production volume  MATk : machine capacity 

 
Table 2. Transportation time between machines by AGV 

To 
From      1 2 3 4 

1 12 9 7 12 
2 4 6 8 - 
3 - 12 8 12 
4 8 7 12 7 

 

1.  F1=4075, F2=0.020855 : 4 4 1 3 2 3 4 2 1 2 2 3 2 3 3 2 3 2 1 
2.  F1=4088, F2=0.018399 : 4 4 1 3 2 3 4 2 1 2 2 1 2 3 3 2 3 2 1 
3.  F1=4093, F2=0.006181 : 4 4 1 3 2 3 4 2 1 2 4 4 1 3 3 2 3 2 1 
4.  F1=4095, F2=0.005944 : 4 4 1 3 2 3 4 2 1 2 4 3 2 3 3 2 3 2 1 
5.  F1=4108, F2=0.003326 : 4 4 1 3 2 3 4 2 1 2 4 1 2 3 3 2 3 2 1 
6.  F1=4124, F2=0.002347 : 4 4 1 3 2 3 1 3 4 2 2 1 2 3 3 2 3 2 1 
7.  F1=4132, F2=0.001734 : 4 4 1 3 2 1 4 3 4 2 2 1 2 3 3 2 3 2 1 

Figure 2. Result of the first example 
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Figure 3. Pareto frontier 
 
In this result, a solution of the corresponding process 

plans for all parts when the case of F1=4075 and 
F2=0.020855 is as follows:  

Part 1 :  4 → 4 → 1→ 3→ 2 → 3 
Part 2 :  4 → 2 → 1→ 2 
Part 3 :  2→ 3 →2 → 3→ 3 
Part 4 :  2 → 3 → 2 → 1 
 
The second example involves 8 parts, 6 machines and 

36 operations. Table 3 and 4 show the processing and 
transportation time for the second example. The available 
processing times for each machine during planning period 
are as follows: 

Machine
Availabletime

:
:

1 2 3 4 5 6
6000 6200 6500 6200 6600 5400

⎡
⎣⎢

⎤
⎦⎥  

The GA is applied with the parameters as follows: 

 max_gen = 1000 and pop_size = 300 . 

 
Table 3. Processing time for the second example 

Mk 
1 2 3 4 5 6 PVi 

Mk 
1 2 3 4 5 6 PVi Pi Oj Pi Oj 

P1 1 9 8 - 4 5 2 32 P5 1 8 8 9 3 7 4 20 
 2 11 3 - 2 4 5   2 4 5 8 5 4 6  
 3 3 - 5 7 3 9   3 3 4 5 - 5 3  
 4 9 6 5 9 - -   4 5 6 4 3 4 -  

P2 1 4 7 6 3 8 - 40 P6 1 9 6 9 2 8 3 48 
 2 7 5 4 8 6 6   2 8 7 6 - 2 -  
 3 6 - 7 6 2 3   3 9 12 8 5 4 9  
 4 5 4 7 8 6 9   4 - 9 8 7 6 7  
 5 - 6 7 2 5 2  P7 1 2 - 4 3 - 7 35 
 6 2 - 3 9 3 6   2 2 - - 8 4 5  

P3 1 - 4 7 4 8 8 25  3 - 3 5 3 3 2  
 2 5 7 4 5 9 5   4 4 6 5 9 6 -  
 3 2 2 5 3 9 2   5 8 2 6 5 3 2  
 4 7 - 3 7 6 7  P8 1 5 - 4 7 3 7 25 

P4 1 7 3 4 7 3 3 34  2 - 7 - - 8 -  
 2 - 7 3 - 2 -   3 7 4 5 7 6 3  
 3 7 4 5 7 6 2   4 - 4 8 3 - 2  
 4 3 - 8 3 4 6   
 5 4 7 9 5 7 5   

 

Table 4. Transportation time between machines for the econd example 
   To 

From 1 2 3 4 5 6 

1 15 9 7 12 - 8 
2 4 8 8 - 12 7 
3 - 12 8 12 - 8 
4 18 13 12 17 18 9 
5 9 10 7 12 20 17 
6 19 20 7 12 20 - 
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For the example, 3 Pareto solutions were obtained 
which are shown in Figure 4. The same results are 
generated for each parameter settings. After running 63 
generations, these solutions were obtained. The average 
CPU time taken to solve the example is 1.23 minutes. 

Figure 4. Pareto solutions for the second example 
 
The above results show that the proposed approach 

can be applied to process sequencing problem with 
multiple objectives. This gives the process planner the 
flexibility to select alternative solutions according to the 
shop requirements. It is clear that the GA approach 
generates much better solutions and the same Pareto 
solutions were obtained for all situations. Furthermore, it 
can be effectively used to solve the complex and large size 
process plan selection.  

6.  CONCLUSION 

A PPS model for the process planning system is 
studied by considering the operation flexibility, realistic 
shop factors and transportation time of AGV system 
simultaneously. This problem is formulated as a multiple 
objective mathematical model and a GA with the adaptive 
recombination strategy is developed to solve the model. 
The approach provides the process planner with 
alternative process plans for manufacturing. 

The proposed approach is found to be effective in 
offering a set of satisfactory Pareto solutions within a 
satisfactory CPU time, which is essential in a multiple 
objective environment, to enable to decision maker to 

determine the best solution. This approach can be 
effectively used to solve the complex and large size PPS 
problem in process planning. 
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