• Title/Summary/Keyword: Seismic wave velocity

Search Result 342, Processing Time 0.023 seconds

Seismic Studies on Velocity Anisotropy in the Ulsan Fault Zone (울산단층대에서의 굴절파 속도이방성 연구)

  • Lee, Kwang-Ja;Kim, Ki-Young;Kim, Woo-Hyuk;Im, Chang-Bock
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.49-56
    • /
    • 2000
  • As a part of geophysical studies on segmentation of the Ulsan fault, walkaway refraction seismic data were measured at 17 stations near National Road 7 between Kyungju and Ulsan. Seismic anisotropy was analyzed in the offset range of 1-48 m. The average refraction velocity of 1787 m/s indicates the refractor is the upper boundary of weathered basement. P-wave anisotropy is computed to be 0.056 in average, which may serve as a weak evidence that the strike of major geologic structure coincide with the inferred fault direction. In the south of the province boundary between Kyungsangnam-do and Kyungsangbuk-do, the velocity anisotropy is normal in that P-wave velocity in the strike direction is faster than the one measured in the dip direction. On the contrary, it appears that the fault strikes in many directions or that fractures may be developed better in the dip direction in the northern par. Such a difference in anisotropic pattern is believed to be a seismic evidence indicating that a segmentation boundary of the Ulsan fault locates near the province boundary.

  • PDF

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Random Amplitude Variability of Seismic Ground Motions and Implications for the Physical Modeling of Spatial Coherency

  • Zerva, A.
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.2
    • /
    • pp.139-150
    • /
    • 2001
  • An initial approach for the identification of physical causes underlying the spatial coherency of seismic ground motions it presented. The approach relies on the observation that amplitude and phase variability of seismic data recorded over extended areas around the amplitude and phase of a common, coherent component are correlated. It suffices then to examine the physical causes for the amplitude variability in the seismic motions, in order to recognize the causes for the phase variability and, consequently, the spatial coherency. In this study, the effect of randomness in the shear wave velocity at a site on the amplitude variability of the surface motions mi investigated by means of simulations. The amplitude variability of the simulated motions around the amplitude of the common component is contained within envelope functions, the shape of which suggests, on a preliminary basis, the trend of the decay of coherency with frequency.

  • PDF

A Comparative Study on Borehole Seismic Test Methods for Site Classification

  • Jung, Jong-Suk;Sim, Youngjong;Park, Jong-Bae;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.389-397
    • /
    • 2012
  • In this study, crosshole seismic test, donwhole seismic test, SPT uphole test, and suspension PS logging (SPS logging) were conducted and the shear wave velocities of these tests were compared. The test demonstrated the following result: Downhole tests showed similar results compared to those of crosshole tests, which is known to be relatively accurate. SPS logging showed reliable results in the case of no casing, i.e. in the rock mass, while, in the case of soil ground, its values were lower or higher than those of other tests. SPT-uphole tests showed similar results in the soil ground and upper area of rock mass compared to other methods. However, reliable results could not be obtained from these tests because SPT sampler could not penetrate into the rock mass for the tests.

P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data (해저면 광각 탄성파 탐사자료를 이용한 BSR 부근의 P파 속도 분석)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 2009
  • In April 2008, KIGAM carried out an ocean-bottom seismometer (OBS) survey in the central Ulleung Basin where strong bottom simulating reflectors (BSRs) were revealed from previous surveys and some gas-hydrate samples were retrieved by direct sampling. The purpose of this survey is to estimate the velocity structure near the BSR in the gas hydrate prospect area using wide-angle seismic data recorded on the ocean-bottom seismometers. Along with the OBS survey, a 2-D seismic survey was performed whereby stratigraphic and preliminary velocity information was obtained. Two methods were applied to wide-angle data for estimating P wave velocity; one is velocity analysis in the $\tau$-p domain and the other is seismic traveltime inversion. A 1-D interval velocity profile was obtained by the first method, which was refined to layered velocity structure by the latter method. A layer stripping method was adopted for modeling and inversion. All velocity profiles at each OBS site clearly show velocity reversal at BSR depths due to the presence of gas hydrates. In addition, we could confirm high velocity in the column/chimney structure.

Investigation into Weathering Degree and Shear Wave Velocity for Decomposed Granite in Hongsung (홍성 지역 화강 풍화 지층에 대한 풍화도 및 전단파 속도 고찰)

  • Sun, Chang-Guk;Kim, Bo-Hyun;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.360-372
    • /
    • 2005
  • The weathering degree and shear wave velocity, $V_S$, were evaluated for decomposed granite layers in Hongsung, where earthquake damages have occurred. The subsurface geological layers and their $V_S$ profiles were determined, respectively, from boring investigations and seismic tests such as crosshole, downhole and SASW tests. The subsurface layers were composed of 10 to 40 m thickness of weathered residual soil and weathered rock in most sites. In the laboratory, the weathering indexes with depth were estimated based on the results of X-ray fluorescence analysis using samples obtained from field, together with the dynamic soil properties determined from resonant column tests using reconstituted specimens. According to the results, it was examined that most weathering degrees represented such as VR, Li, CIA, MWPI and WIP were decreased with increasing depth with exception of RR and CWI. For weathered residual soils in Hongsung, the $V_S's$ determined from borehole seismic tests were slightly increased with increasing depth, and were similar to those from resonant column tests. Furthermore, the $V_S$ values were independent on the weathering degrees, which were decreased with depth.

  • PDF

Field Application of New Seismic Site Characterization Using HWAW(Harmonic Wavelet Analysis of Wave) Method (HWAW(Harmonic Wavelet Analysis of Wave) 방법을 이용한 새로운 탄성파 지반조사기법의 현장 적용)

  • 박형춘;김동수;이병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.51-59
    • /
    • 2004
  • The evaluation of shear modulus is very important in various fields of civil engineering. In this paper, the site characterization method using HWAW method is applied to determine shear wave velocity profile of two test sites in order to verify the field applicability of HWAW method. Shear wave velocity profiles by HWAW method are compared with shear wave velocity profiles by SASW test and PS-Suspension Logging test. Through field applications, it is shown that HWAW method can minimize the effect of noise and lateral non-homogeneity of the site and determine detailed local shear wave velocity profile of site.

Evaluation of Shear Wave Velocity of Engineering Fill by Resonant Column and Torsional Shear Tests (공진주와 비틂전단시험에 의한 성토지반의 전단파속도 추정에 관한 연구)

  • Park, Jong-Bae;Sim, Young-Jong;Jung, Jong-Suk;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.387-395
    • /
    • 2011
  • According to the seismic design criteria for structural buildings in Korea, the ground is classified into 5 types based on the average shear wave velocity measured from elastic wave tests on site and seismic load applied to the structure is estimated. However, elastic wave tests in site, however, on the engineering fill, cannot be performed during the construction period. Therefore, to evaluate shear wave velocity considering field conditions, resonant column (RC) and torsional shear (TS) tests are performed and compared with various elastic wave test results. As a result, if confining pressure for the tests using engineering fill are considered properly, we can obtain similar results comparing with those of elastic wave tests. In addition, by considering the effect of maximum shear modulus and confining pressure by RC/TS tests, n values shows typical values ranging from 0.434 to 0.561 so that utilization of RC/TS tests can be useful to infer shear modulus in field.

Discontinuous Grids and Time-Step Finite-Difference Method for Simulation of Seismic Wave Propagation (지진파 전파 모의를 위한 불균등 격자 및 시간간격 유한차분법)

  • 강태섭;박창업
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.50-58
    • /
    • 2003
  • We have developed a locally variable time-step scheme matching with discontinuous grids in the flute-difference method for the efficient simulation of seismic wave propagation. The first-order velocity-stress formulations are used to obtain the spatial derivatives using finite-difference operators on a staggered grid. A three-times coarser grid in the high-velocity region compared with the grid in the low-velocity region is used to avoid spatial oversampling. Temporal steps corresponding to the spatial sampling ratio between both regions are determined based on proper stability criteria. The wavefield in the margin of the region with smaller time-step are linearly interpolated in time using the values calculated in the region with larger one. The accuracy of the proposed scheme is tested through comparisons with analytic solutions and conventional finite-difference scheme with constant grid spacing and time step. The use of the locally variable time-step scheme with discontinuous grids results in remarkable saving of the computation time and memory requirement with dependency of the efficiency on the simulation model. This implies that ground motion for a realistic velocity structures including near-surface sediments can be modeled to high frequency (several Hz) without requiring severe computer memory

  • PDF

Joint inversion of receiver function and surface-wave phase velocity for estimation of shear-wave velocity of sedimentary layers (퇴적층들의 전단파 속도 평가를 위한 수신함수와 표면파 위상 속도의 통합 역산)

  • Kurose, Takeshi;Yamanaka, Hiroaki
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.93-101
    • /
    • 2006
  • In this study, we propose a joint inversion method, using genetic algorithms, to determine the shear-wave velocity structure of deep sedimentary layers from receiver functions and surface-wave phase velocity. Numerical experiments with synthetic data indicate that the proposed method can avoid the trade-off between shear-wave velocity and thickness that arises when inverting the receiver function only, and the uncertainty in deep structure from surface-wave phase velocity inversion alone. We apply the method to receiver functions obtained from earthquake records with epicentral distances of about 100 km, and Rayleigh-wave phase velocities obtained from a microtremor array survey in the Kanto Plain, Japan. The estimated subsurface structure is in good agreement with the previous results of seismic refraction surveys and deep borehole data.