• 제목/요약/키워드: Seismic strengthening

검색결과 212건 처리시간 0.026초

A practical model for simulating nonlinear behaviour of FRP strengthened RC beam-column joints

  • Shayanfar, Javad;Bengar, Habib Akbarzadeh
    • Steel and Composite Structures
    • /
    • 제27권1호
    • /
    • pp.49-74
    • /
    • 2018
  • Generally, beam-column joints are taken into account as rigid in assessment of seismic performance of reinforced concrete (RC) structures. Experimental and numerical studies have proved that ignoring nonlinearities in the joint core might crucially affect seismic performance of RC structures. On the other hand, to improve seismic behaviour of such structures, several strengthening techniques of beam-column joints have been studied and adopted in practical applications. Among these strengthening techniques, the application of FRP materials has extensively increased, especially in case of exterior RC beam-column joints. In current paper, to simulate the inelastic response in the core of RC beam-column joints strengthened by FRP sheets, a practical joint model has been proposed so that the effect of FRP sheets on characteristics of an RC joint were considered in principal tensile stress-joint rotation relations. To determine these relations, a combination of experimental results and a mechanically-based model has been developed. To verify the proposed model, it was applied to experimental specimens available in the literature. Results revealed that the model could predict inelastic response of as-built and FRP strengthened joints with reasonable precision. The simple analytic procedure and the use of experimentally computed parameters would make the model sufficiently suitable for practical applications.

Micro-concrete composites for strengthening of RC frame made of recycled aggregate concrete

  • Marthong, Comingstarful;Pyrbot, Risukka N.;Tron, Stevenly L.;Mawroh, Lam-I D.;Choudhury, Md. Sakil A.;Bharti, Ganesh S.
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.461-468
    • /
    • 2018
  • In this paper, to access the suitability of recycled aggregate for structural applications, concrete strength i.e., compressive, tensile and flexural strength were evaluated and compared with those specimens made of natural aggregates. Test results indicated that 30 to 42% of the mentioned strength decreases. To study the performance of frame structures made of recycled aggregate concrete (RAC) two reinforced RAC frames were prepared and tested under monotonic loading. The joint regions of one of the RAC frame were casted with micro-concrete. A reference specimen was also prepared using natural aggregate concrete (NAC) and subjected to a similar loading condition. The RAC frame resulted in a brittle mode of failure as compared to NAC frame. However, the presence of a micro-concrete at the joint region of an RAC frame improved the damage tolerance and load resisting capacity. Seismic parameter such as energy dissipation, ductility and stiffness also improves. Conclusively, strengthening of joint region using micro-concrete is found to have a significant contribution in improving the seismic performance of an RAC frame.

횡 변위 조절을 위한 강재 댐퍼의 이력 거동 (Hysteretic Behavior of Steel Damper for the Lateral Displacement Control)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권3호
    • /
    • pp.46-52
    • /
    • 2018
  • 기존 골조구조물의 횡 변위 조절이 가능한 댐퍼 시스템을 개발하기 위한 목적으로 상세개발 및 성능실험을 실시하였다. 개발 상세는 기둥간 보의 변형을 방지하기 위하여 고안된 ALD및 층간변위를 제어하기 위하여 고안된 AWD로 구분되며, 기존 연구결과의 비보강 BF를 비교대상으로 사용하였다. 파괴양상, 하중-변위 곡선, 포락선, 최대강도, 강성저하 및 에너지 소산능력 등을 비교 평가하였으며, ALD 및 AWD의 내진보강효과를 확인할 수 있었다. 또한 아라미드 시트로 기둥을 구속하는 공법이 내진성능 향상에 매우 우수함을 확인하였다.

Interface treatment in shotcrete jacketing of reinforced concrete columns to improve seismic performance

  • Vandoros, Konstantinos G.;Dritsos, Stephanos E.
    • Structural Engineering and Mechanics
    • /
    • 제23권1호
    • /
    • pp.43-61
    • /
    • 2006
  • An investigation of the effectiveness of the interface treatment when column concrete jacketing is performed is presented. Alternative methods of interface connection were used in order to investigate the performance of strengthened concrete columns. These connecting techniques involved roughening the surface of the original column, embedding steel dowels into the original column and a combination of these two techniques. The experimental program included three strengthened specimens, one original specimen (unstrengthened) and one as-built specimen (monolithic). The specimens represented half height full-scale old Greek Code (1950's) designed ground floor columns of a typical concrete frame building. The jackets of the strengthened specimens were constructed with shotcrete. All specimens were subjected to displacement controlled earthquake simulation loading. The seismic performance of the strengthened specimens is compared to both the original and the monolithic specimens. The comparison was performed in terms of strength, stiffness and hysteretic response. The results demonstrate the effectiveness of the strengthening methods and indicate that the proper construction of a jacket can improve the behaviour of the specimens up to a level comparable to monolithic behaviour. It was found that different methods of interface treatment could influence the failure mechanism and the crack patterns of the specimens. It was also found that the specimen that combined roughening with dowel placement performed the best and all strengthened columns were better at dissipating energy than the monolithic specimen.

Experimental study on high gravity dam strengthened with reinforcement for seismic resistance on shaking table

  • Wang, Mingming;Chen, Jianyun;Fan, Shuli;Lv, Shaolan
    • Structural Engineering and Mechanics
    • /
    • 제51권4호
    • /
    • pp.663-683
    • /
    • 2014
  • In order to study the dynamic failure mechanism and aseismic measure for high concrete gravity dam under earthquake, the comparative models experiment on the shaking table was conducted to investigate the dynamic damage response of concrete gravity dam with and without the presence of reinforcement and evaluate the effectiveness of the strengthening measure. A new model concrete was proposed and applied for maintaining similitude with the prototype. A kind of extra fine wires as a substitute for rebar was embedded in four-points bending specimens of the model concrete to make of reinforced model concrete. The simulation of reinforcement concrete of the weak zones of high dam by the reinforced model concrete meets the similitude requirements. A tank filled with water is mounted at the upstream of the dam models to simulate the reservoir. The Peak Ground Acceleration (PGA) that induces the first tensile crack at the head of dam is applied as the basic index for estimating the overload capacity of high concrete dams. For the two model dams with and without strengthening tested, vulnerable parts of them are the necks near the crests. The results also indicate that the reinforcement is beneficial for improving the seismic-resistant capacity of the gravity dam.

유사동적 실험에 의한 기존 RC 교각의 내진성능 평가 (Seismic Performance Evaluation of Existing RC Bridge Piers by Pseudo Dynamic Test)

  • 박종협
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.364-371
    • /
    • 2000
  • The pseudo dynamic test has been carried out so as to investigate the seismic performance of RC bridge piers strengthened with and without glass fiber sheets. The Lessons from severe demage of many infrastructures in Kobe(1995) and Northridge(1996) earthquakes have emphasized the need to develop the retrofit measures to enhance flexural strength, ductility and shear strength of RC bridge piers nonseismically designed before 1992. Therefore, the objective of this experimental research is to investigate the seismic behavior of circular reinforced concrete bridge piers by the pseudo dynamic test. and then to enhance the ductility of concrete piers strengthening with glass fiber sheets in the plastic hinge region. 7 circular RC bridge piers were made in a 1/3.4 scale. Important test parameters are confinement steel ratio, retrofitting. load pattern, etc. The seismic behavior of circular concrete piers under artificial ground motions has been evaluated through strength and stiffness degradation, energy dissipation. It can be concluded that existing bridge piers wrapped with glass fibers in the plastic hinge regions could have enough seismic performance.

  • PDF

Seismic retrofitting and fragility for damaged RC beam-column joints using UHP-HFRC

  • Trishna, Choudhury;Prem P., Bansal
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.463-472
    • /
    • 2022
  • Reinforced concrete (RC) beam column joints (BCJ) have mostly exhibited poor seismic performance during several past earthquakes, typically due to the poor-quality concrete or lack of reinforcement detailing typical of pre-code design practice. The present study is motivated towards numerical simulation and seismic fragility assessment of one such RC-BCJ. The BCJ is loaded to failure and strengthened using Ultra High Performance-Hybrid Fiber Reinforced Concrete (UHP-HFRC) jacketing. The strengthening is performed for four different BCJ specimens, each representing an intermediate damage state before collapse. viz., slight, moderate, severe, and collapse. From the numerical simulation of all the BCJ specimens, an attempt is made to correlate different modelling and design parameters of the BC joint with respect to the damage states. In addition, seismic fragility analysis of the original as well as the retrofitted damaged BCJ specimens show the relative enhancement achieved in each case.

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • 제14권4호
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

X-가새형 탄소섬유케이블을 이용한 중·저층 철근콘크리트 건물의 내진보강법 개발 (A Development of Seismic Rehabilitation Method of RC Buildings Strengthened with X-Bracing Using Carbon Fiber Composite Cable)

  • 이강석
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권3호
    • /
    • pp.1-9
    • /
    • 2014
  • 본 연구에서는 기존 강재브레이스 내진보강법이 가지는 좌굴문제 등 단점을 극복할 수 있는 중 저층 철근콘크리트 건축물에 효과적으로 적용할 수 있는 새로운 내진보강법을 개발하였다. Carbon Fiber Composite Cable (CFCC)을 이용하여 건축물 골조 외부에 X자 형태로 내진보강을 실시하고, 상부 및 하부 보 양 단부에 CFCC X-브레이싱을 고정하기 위해서 평판 및 돌출형 나사식 접합으로 내진보강을 실시하는 내진보강법으로서, 반복하중 실험을 통하여 내진보강 효과를 규명하였다. 실험체는 비교용 비보강 골조, 평판형 및 돌출형 CFCC X-브레이싱 내진보강 골조 실험체 총 3개를 제작하였다. 실험결과, 본 연구에서 개발한 CFCC 내진보강법은 강도증진형 내진보강법으로 드러났으며, 기존 강재브레이스 보강법 대비 중량증가가 거의 없으며, 재료자체가 압축에 대한 좌굴이 없으며, 경량이므로 시공성이 매우 우수하고 중량 및 체적대비 우수한 강도가 발휘될 뿐만 아니라 특히, CFCC의 직경을 변경함으로서 내진보강 목적 (강도 보강량)에 대응하여 내진성능을 쉽게 변화시킬 수 있는 장점이 있다.

섬유보강재를 이용한 RC 기둥의 보강 효과 (Strengthening Effects of RC Column using Fiber Reinforced Polymer)

  • 이현호;김진호;노광근
    • 콘크리트학회논문집
    • /
    • 제24권4호
    • /
    • pp.473-480
    • /
    • 2012
  • 아라미드 FRP로 보강된 RC 기둥의 전단보강효과를 평가하고자, 구조성능 실험을 수행하였다. 실험변수는 아라미드 시트 및 스트립 보강이며, 총 4개의 실험체를 대상으로 하였다. 실험 결과는 비보강 실험체를 기준으로 보강효과를 강도 및 에너지 능력 등을 평가하였다. 평가 결과 아라미드 시트보강이 강도증진과 아울러, 에너지 소산능력의 증진이라는 측면에서 매우 유효한 것으로 평가되었다.