• 제목/요약/키워드: Seismic performance analysis

검색결과 1,513건 처리시간 0.03초

교량의 내진성능 평가를 위한 역량스펙트럼 적용 연구 (A study on the Capacity Spectrum for Seismic Performance Evaluation of Bridge)

  • 박연수;이병근;김응록;서병철;박선준;최선민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.1012-1017
    • /
    • 2008
  • In this study, We examine closely the capacity spectrum method which a kind of displacement-based method evaluated by displacement of structure as an alternative to the load-based analysis method. The displacement-based method can easily review the strength of structure, seismic performance, ductility. Seismic performance by using capacity spectrum method is divided into design response spectrum and capacity spectrum. We can diagram design response spectrum by deciding the design seismic factor depending on performance target, site classification, seismic level, return period as UBC-97. Capacity spectrum is a load-displacement curve obtained by Push-over analysis considering the geometric parameter and the material parameter. We execute the seismic performance evaluation by using the capacity spectrum method to reinforced concrete pier which has been seismic design. As a result, We confirmed that there is a yield point and a ultimate point close by design response spectrum of UBC-97.

  • PDF

Seismic performance evaluation of RC bearing wall structures

  • Rashedi, Seyed Hadi;Rahai, Alireza;Tehrani, Payam
    • Computers and Concrete
    • /
    • 제30권2호
    • /
    • pp.113-126
    • /
    • 2022
  • Reinforced concrete bearing walls (RCBWs) are one of the most applicable structural systems. Therefore, vulnerability analysis and rehabilitation of the RCBW system are of great importance. In the present study, in order to the more precise investigation of the performance of this structural resistant system, pushover and nonlinear time history analyses based on several assumptions drawing upon experimental research were performed on several models with different stories. To validate the nonlinear analysis method, the analytical and experimental results are compared. Vulnerability evaluation was carried out on two seismic hazard levels and three performance levels. Eventually, the need for seismic rehabilitation with the basic safety objective (BSO) was investigated. The obtained results showed that the studied structures satisfied the BSO of the seismic rehabilitation guidelines. Consequently, according to the results of analyses and the desired performance, this structural system, despite its high structural weight and rigid connections and low flexibility, has integrated performance, and it can be a good option for earthquake-resistant constructions.

비보강 조적식 구조의 형상에 따른 내진성능 평가 해석 (Effect of Physical Shape on Seismic Performance of URM Structures)

  • 박주남
    • 한국지진공학회논문집
    • /
    • 제20권5호
    • /
    • pp.277-283
    • /
    • 2016
  • Unreinforced masonry (URM) buildings are known to be highly vulnerable to seismic loadings. Although significant physical variation may exist for URM buildings that fall into a same structural category, a single set of fragility curves is typically used as a representation of the seismic vulnerability of the URM structures. This study investigates the effect of physical variation of URM structures on their seismic performance level. Variables that describe the physical variation of the structure are defined based on the inventory analysis. Seismic behavior of the structures is then monitored by changing the variables to investigate the effect of each variable. The analysis results show that among the variables considered the seismic performance of URM building depends on the variation of the width, the aspect ratio, and the number of story. The need for further research on the modeling of the connections between the walls and diaphragms and the torsional effect is also addressed.

적응적 횡하중 분배방법을 이용한 건축구조물의 내진성능평가 (Seismic Performance Evaluation of Building Structures Based on the Adaptive Lateral Load Distribution)

  • 이동근;최원호;정명채
    • 한국지진공학회논문집
    • /
    • 제8권1호
    • /
    • pp.39-58
    • /
    • 2004
  • 성능에 기초한 내진설계 분야에서 구조물의 내진성능평가를 위해서는 비탄성 지진거동을 보다 정확하게 예즉할 필요가 있다. 성능기초 설계기준에 반영되어 있는 내진성능 평가 방법 가운데 하나인 pushover해석을 이용한 방법은 몇몇 연구자들에 의하여 다양한 해석 방법론이 개발되었다. 이 방법을 사용하여 비탄성 전체 또는 국부적 지진응답을 보다 정확하게 평가하기 위해서는 사용되는 횡하중 분배가 구조시스템과 지반운동의 동적특성에 부합되도록 반영되어야 한다. 그리고 구조물의 변형능력을 합리적으로 평가하여 성능점을 보다 정확하게 산정해야 한다. 본 연구에서는 개선된 적응적 횡하중 분배방법과 건물의 등가응답을 이용하여 비탄성 지진응답을 정확하고 효율적으로 평가할 수 있는 방법을 제안하였다. 제안된 방법은 건물의 전체 비탄성 거동에 대한 내진성능을 평가하고 국부적인 비탄성 지진응답을 정확하게 산정하는데 사용될 수 있다. 또한 제안된 방법의 정확성과 타당성을 검증하기 위해서 비탄성 시간이력해석과 기존의 다른 해석방법들에 의한 비탄성 지진응답과 비교하였다.

Time-dependent seismic risk analysis of high-speed railway bridges considering material durability effects

  • Yan Liang;Ying-Ying Wei;Ming-Na Tong;Yu-Kun Cui
    • Earthquakes and Structures
    • /
    • 제24권4호
    • /
    • pp.275-288
    • /
    • 2023
  • Based on the crucial role of high-speed railway bridges (HSRBs) in the safety of high-speed railway operations, it is an important approach to mitigate earthquake hazards by proceeding with seismic risk assessments in their whole life. Bridge seismic risk assessment, which usually evaluates the seismic performance of bridges from a probabilistic perspective, provides technical support for bridge risk management. The seismic performance of bridges is greatly affected by the degradation of material properties, therefore, material damage plays a nonnegligible role in the seismic risk assessment of the bridge. The effect of material damage is not considered in most current studies on seismic risk analysis of bridges, nevertheless. To fill the gap in this area, in this paper, a nonlinear dynamic time-history analysis has been carried out by establishing OpenSees finite element model, and a seismic vulnerability analysis is carried out based on the incremental dynamic analysis (IDA) method. On this basis, combined with the site risk analysis, the time-dependent seismic risk analysis of an offshore three-span HSRB in the whole life cycle has been conducted. The results showed that the seismic risk probabilities of both components and system of the bridge increase with the service time, and their seismic risk probabilities increase significantly in the last service period due to the degradation of the material strength, which demonstrates that the impact of durability damage should be considered when evaluating the seismic performance of bridges in the design and service period.

철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구 (A theoretical study on the factors for the seismic performance of RC T-shaped walls)

  • 하상수;최창식;오영훈;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

면진 원전 면진-비면진구간 연결 배관의 내진성능 평가 (Seismic Performance Evaluation of Piping System Crossing the Isolation Interface in Seismically Isolated NPP)

  • 함대기;박준희;최인길
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.141-150
    • /
    • 2014
  • A methodology to evaluate the seismic performance of interface piping systems that cross the isolation interface in the seismically isolated nuclear power plant (NPP) was developed. The developed methodology was applied to the safety-related interface piping system to demonstrate the seismic performance of the target piping system. Not only the seismic performance for the design level earthquakes but also the performance for the beyond design level earthquakes were evaluated. Two artificial seismic ground input motions which were matched to the design response spectra and two historical earthquake ground motions were used for the seismic analysis of piping system. The preliminary performance evaluation results show that the excessive relative displacements can occur in the seismically isolated piping system. If the input ground motion contained relatively high energy in the low frequency region, we could find that the stress response of the piping system exceed the allowable stress level even though the intensity of the input ground motion is equal to the design level earthquake. The structural responses and seismic performances of piping system were varied sensitively with respect to the intensities and frequency contents of input ground motions. Therefore, for the application of isolation system to NPPs and the verification of the safety of piping system, the seismic performance of the piping system subjected to the earthquake at the target NPP site should be evaluated firstly.

엔지니어링 플라스틱 슬릿댐퍼의 수치해석적 연구 (Numerical Analysis of Engineering Plastics Slit Damper)

  • 김유성;김기철
    • 한국공간구조학회논문집
    • /
    • 제24권3호
    • /
    • pp.79-86
    • /
    • 2024
  • Recently, steel dampers are widely used as seismic reinforcement devices. Steel dampers have the advantage of being easy to manufacture and being able to absorb a lot of energy through stable hysteresis behavior. However, there is a possibility that the steel damper may be damaged due to fatigue caused by repeated seismic loads. In this study, the seismic performance of steel dampers and engineering plastic dampers with different physical characteristics were compared and analyzed. In addition, numerical analysis was performed on a hybrid damper that combines a steel damper and an engineering plastic damper. It is more effective to apply engineering plastic dampers to structures that experience significant displacement due to seismic loads. The behavior of hybrid dampers combining steel dampers and engineering plastic dampers is dominated by steel dampers. A hybrid damper in which an engineering plastic damper yields after a steel damper yields can effectively respond to various seismic loads and secure high ductility and excellent seismic performance.

Seismic linear analytical research on the mechanical effects of RC frame structure under the different column orientations

  • Mo Shi;Min-woo Choi;Yeol Choi;Sanggoo Kang
    • Architectural research
    • /
    • 제26권3호
    • /
    • pp.83-92
    • /
    • 2024
  • The profound impact of earthquakes on human lives and the built environment emphasizes the substantial human and economic losses result-ing from structural collapses. Many researchers in this field highlight the longstanding societal challenge posed by earthquakes and under-score the imperative to minimize such losses. Over the decades, researchers have dedicated efforts to seismic design, focusing on improv-ing structural performance to mitigate earthquake-induced damages. This has led to the development of various structural analysis methods. In this research, a specific RC frame structure (401 Bldg.) at Kyungpook National University that is designed for educational purposes, serves as a representative case. This research employs SAP 2000 for simulation, aiming to assess the structural performance under seismic condi-tions, focusing on evaluating the structural behavior under different column orientations. This research utilizes RSA (Response Spectrum Analysis) to comprehensively examine parameters of displacement, base shear force, base moment, joint radians, and story drift. Referring to the results from RSA, this research also assesses the structural performance using LTHA (Linear Time History Analysis) by conducting synthetic frequency domain and synthetic time domain analyses based on the seismic wave from the Kobe 1995 earthquake (Abeno). Based on the findings from the discussions, this research is expected to be a valuable reference for structural design within seismic resistance and the seismic reinforcement of existing RC frame structures.