• Title/Summary/Keyword: Seismic mass

Search Result 501, Processing Time 0.025 seconds

Design and consturction of single drilled shaft foundation (단일 현장타설말뚝 기초의 설계 및 시공)

  • Jeon, Kyung-Soo;Kim, Kyung-Suk;Kim, Jeong-Yeul
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.86-100
    • /
    • 2006
  • The single drilled shaft foundation has been used in the other countries, but has not used in South Korea at all This foundation is very effective and economic method in South Korea which is easy to meet a good rock mass within 50m depth from the ground We have many experiences to construct 1.52 5m drilled shaft foundations and ability to construct 30m drilled shaft foundation without special efforts The soil behavior is nonlinear, but it can be proposed in linear in practical purpose on bridges. The elastic modulus of soil can be rationally obtained by the method of Road Bridge Design Manual in South Korea using the Schmertmann(1970)'s proposal, and the elastic modulus of rock can be obtained by the field test. In seismic design the column and drilled shaft must be restricted to the elastic design because the behavior of this foundation is flexible and the arrangement of the rebars makes the various defect In this paper the design criteria is compared with FHWA design criteria, and the design criteria is proposed in consistent with Road Bridge Design Manual in South Korea. The single drilled shaft foundation of a test bridge was constructed in the Iksan-Jangsoo highway, and we checked its stability, workability and economy

  • PDF

A HIGH-ASPECT-RADIO COME ACTUATOR USING UV-LIGA SURFACE MICROMACHINING AND (110) SILICON BULK MICORMACHINING (UV-LIGA 표면 미세 가공 기술과 (110) 실리콘 몸체 미세 가공 기술을 이용한 큰 종횡비의 빗모양 구동기 제작에 관한 연구)

  • Kim, Seong-Hyeok;Lee, Sang-Hun;Kim, Yong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.132-139
    • /
    • 2000
  • This paper reports a novel micromachining process based on UV-LIGA process and (110) silicon anisotropic etching for fabrication of a high-aspect-ratio comb actuator. The comb electrodes are fabricated by (110) SILICON comb structure considering the etch-rate-ratio between (110) and (111) planes and lateral etch rate of a beam-type structure. The fabricated structure was$ 400\mum \; thick\; and\; 18\mum$ wide comb electrodes separated by $7\mim$ so that the height-gap ratio was about 57. Also considering resonant frequency of the comb actuator and the frequency-matching between sensing and driving mode for gyroscope application, we designed the number, width, height and length of the spring structures. Electroplated gold springs on both sides of the seismic mass were $15\mum\; wide,\; 14\mum\; thick\; and \; 500\mum$ long. The fabricated comb actuator had resonant frequency ay 1430Hz, which was calculated to be 1441Hz. The proposed fabrication process can be applicable to the fabrication of a high-aspect-ratio comb actuator for a large displacement actuator and precision sensors. Moreover, this combined process enables to fabricate a more complex structure which cannot be fabricate only by surface or bulk micromachining.

  • PDF

comparative Study of Analytical Modal Properties of Instrumentation Cabinet of Nuclear Power Plant (모델링 방법의 차이에 따른 원전계측캐비넷의 동특성 해석 결과 비교분석)

  • 조양희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.186-192
    • /
    • 1999
  • Safety-related equipments of nuclear power plant must be seismically qualified to demonstrate their ability to function as required during and/or after the earthquake, The seismic qualification is usually achieved through analysis and testing. Analysis method is preferably adopted for structurally simple equipments which are easy to be mathematically modeled. However even for relatively complex equipments analysis method is occasionally used for computing the input motion or supporting information for the component test followed. Electrical cabinet is a typical example for which analysis method is combinedly used with test to get modal properties of the enclosing cabinet structure. Usually the structural elements and doors of the cabinet are loosely interconnected with small-size bolts or spot welding. Therefore cabinet-type equipment usually has high and complex nonlinear properties which are not easily idealized by simple practical modeling techniques. in this paper with respect to a typical cabinet-type structure(instrumentation cabinet of nuclear power plant) a comparative study has been performed between three different state-of-the -art modeling techniques: lumped mass model frame model and FEM modal. Form the study results it has been found that modal properties of the cabinet-type structure in the elastic behavior range can be reasonably computed through any type of modeling techniques in the practice with slight modification of model properties to get better accuracy. However it needs additional modeling techniques to get reasonable results up to nonlinear range.

  • PDF

A Surface-Bulk Micromachined Electromagnetic Gyroscope Operating at Atmospheric Pressure (표면 및 몸체 미세 가공 기술로 제작된 대기압에서 동작하는 전자력 검출형 각속도계의 연구)

  • Kim, Seong-Hyok;Kim, Yong-Kweon;Song, Jin-Woo;Lee, Jang-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2230-2232
    • /
    • 2000
  • This paper reports an electrostatically driven and electromagnetically sensed planar vibratory gyroscope based on a surface-bulk combined micromachining. The fabricated structure has comb electrodes which are 400${\mu}m$ thick, 18${\mu}m$ wide, 600${\mu}m$ long and separated by 7${\mu}m$ so that the height-gap ratio is about 57. It also has electroplated gold springs which are 15${\mu}m$ wide, 14${\mu}m$ thick and 500${\mu}m$ long on both sides of the seismic mass. The open-loop characteristics of fabricated gyroscope at atmospheric pressure are measured on a rate table. The fabricated gyroscope has a sensitivity of 30mV/deg/sec, and a resolution of 0.1deg/sec at atmospheric pressure. It is expected that non linearity of full scale output is less than 0.8% with. the dynamic range of $\pm$500deg/sec.

  • PDF

Vibration Suppression Design on the Instrument Supporting Structure for the Optical Performance Measurement (대구경 반사경 광학성능 측정을 위한 간섭계 지지구조물의 진동저감 설계)

  • Kim, Hong-Bae;Lim, Jong-Min;Yang, Ho-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.205-208
    • /
    • 2005
  • Fabrication of large scaled mirror for the telescope application is the most challenging technology in recent year. Sophisticate technologies and know-how in fabrication and measurement are required to overcome the technological obstacles. KRISS(Korea Research Institute for Standards and Science) is now developing a large scaled mirror fabrication facility and KARI(Korea Aerospace Research Institute) is supporting the development. High precision interferometric test is required during the grinding and polishing of mirror to identify the surface profile precisely. The required fabrication accuracy of the mirror surface profile is $\lambda$/50 ms($\sim$10 nm for visible wave length). Thus the measurement accuracy should be far less than 10 m. To get this requirement, it is necessary to provide vibration free environment for the interferometer system and mirror under test. Thus the vibration responses on the mirror supporting table due to external vibration should be minimized by using a special isolation system. And the responses on the top of the tower, which hold the interferometer during test, should be minimized simultaneously. In this paper, we propose the concept design of vibration suppression system for the KRISS mirror fabrication facility.

  • PDF

On component isolation of conceptual advanced reactors

  • Shrestha, Samyog;Kurt, Efe G.;Prakash, Arun;Irfanoglu, Ayhan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2974-2988
    • /
    • 2022
  • Implementation of component isolation in nuclear industry is challenging due to gaps in research and the lack of specific guidelines. In this study, parameters affecting component-level isolation of advanced reactor vessels are identified based on a representative numerical model with explicit consideration of nonlinear soil-structure interaction (SSI). The objective of this study is to evaluate the effectiveness of, and to identify potential limitations of using conventional friction pendulum bearings to seismically isolate vessels. It is found that slender vessels or components are particularly vulnerable to rotational accelerations at the isolation interface, which are caused by rotation of the sub-structure and by excitation of higher modes in the horizontal direction of the seismically isolated system. Component isolation is found to be more effective for relatively stiffer vessels and at sites with stiff soil. Considering that conventional isolators are deficient in resisting axial tension, it is observed that the optimum location for supporting a component to achieve seismic isolation, is at a cross-sectional plane passing through the center of mass of the vessel. These findings are corroborated by numerous simulations of the response of seismically isolated reactor vessels at different nuclear power plant sites subject to a variety of ground motions.

Application of GMDH model for predicting the fundamental period of regular RC infilled frames

  • Tran, Viet-Linh;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.123-137
    • /
    • 2022
  • The fundamental period (FP) is one of the most critical parameters for the seismic design of structures. In the reinforced concrete (RC) infilled frame, the infill walls significantly affect the FP because they change the stiffness and mass of the structure. Although several formulas have been proposed for estimating the FP of the RC infilled frame, they are often associated with high bias and variance. In this study, an efficient soft computing model, namely the group method of data handling (GMDH), is proposed to predict the FP of regular RC infilled frames. For this purpose, 4026 data sets are obtained from the open literature, and the quality of the database is examined and evaluated in detail. Based on the cleaning database, several GMDH models are constructed and the best prediction model, which considers the height of the building, the span length, the opening percentage, and the infill wall stiffness as the input variables for predicting the FP of regular RC infilled frames, is chosen. The performance of the proposed GMDH model is further underscored through comparison of its FP predictions with those of existing design codes and empirical models. The accuracy of the proposed GMDH model is proven to be superior to others. Finally, explicit formulas and a graphical user-friendly interface (GUI) tool are developed to apply the GMDH model for practical use. They can provide a rapid prediction and design for the FP of regular RC infilled frames.

Types and Geomorphic Development of Large Landslides in the Kokomeren River Basin, Kyrgyzstan (키르기스스탄 코코메렌강 유역의 대규모 산사태 유형과 지형 발달)

  • Oh, Jeong-Sik
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-14
    • /
    • 2019
  • Large landslide is a type of mass movement that causes drastic landform changesin a short period, and it causes huge human and property damage over a large area. The purpose of this study is to categorize the types and characteristics of large landslides around the Kokomeren River basin, Kyrgyzstan and to discuss the geomorphic development after the large landslides. The topographic analysis about a total of 20 landslides documented collapsed volumes of 0.01 to 1.10 km3, height drops of 180 to 1,770 m, and runout distances of 1,200 to 5,400 m. Rock avalanche and rockslide are identified as major types of large-scale landslides in the study area. Rock avalanches can be divided into P-type, J-type, and S-type based on the features of slope failure and kinematic characteristics of rock debris. Landslide synchronistic landforms such as trimlines, transverse ridges, longitudinal ridges, levees, and hummocks are well developed in the rock avalanche. The pieces of evidence of landslide dam, landslide-dammed lake, and remnant outburst flood deposits are observed in the upstream and downstream where the rockslides occurred. The Ak-Kiol landslide dam is the best example of a geomorphic development due to lake spillover and the large landslides were likely to be triggered by huge paleo-seismic events.

In-Structure Response Spectra of Seismically Isolated Shear Buildings Considering Eccentricity Effect (면진된 전단 거동 구조물의 층응답스펙트럼에 대한 편심효과)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • For important structures such as nuclear power plants, In-Structure Response Spectrum (ISRS) analysis is essential because it evaluates the safety of equipment and components installed in the structure. Because most structures are asymmetric, the response can be affected by eccentricity. In the case of seismically isolated structures, this effect can be greater due to the difference between the center of mass of the structure and the center of rigidity of the isolator layer. Therefore, eccentricity effects must be considered when designing or evaluating the ISRS of seismically isolated structures. This study investigated the change of the ISRS of an isolated structure by assuming accidental eccentricity. The variables that affect the ISRS of the isolated structure were analyzed to see what additional impact they had due to eccentricity. The ISRS of the seismically isolated structure with eccentricity was amplified more than when there was non-eccentricity, and it was boosted more significantly in specific period ranges depending on the isolator's initial stiffness and seismic intensity. Finally, whether the displacement requirement of isolators can be applied to the variation of the ISRS due to eccentricity in the design code was also examined.

Estimating Soil Thickness in a Debris Flow using Elastic Wave Velocity (탄성파 속도를 활용한 토석류 위험지역의 표토층 두께 결정)

  • Min, Dae-Hong;Park, Chung-Hwa;Lee, Jong-Sub;Yoon, Hyung-Koo
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.143-152
    • /
    • 2016
  • To estimate the stability of a debris flow it is necessary to know the mass of surface soil, cohesion, slope, and friction angle. Given that the mass of surface soil is a function of soil thickness and mass density, it is important to obtain reliable estimates of soil thickness across a wide area. The objective of this paper is to estimate soil thickness using the elastic wave velocity with a new standard velocity. Tests are performed in debris-flow hazard areas, after which four profiles are selected to obtain the elastic wave velocity. Dynamic cone penetration tests are carried out to find the soil thickness at 18 points. The elastic wave velocity shows the area consists of 3~4 layers, and soil thicknesses are predicted by utilizing the new standard. The elastic wave velocity and dynamic cone penetration tests yield large differences in soil thickness. Therefore, this study shows that the new standard is useful not only in estimating soil thickness but also in improving the reliability of estimates of soil thickness.