• Title/Summary/Keyword: Segmental Method

Search Result 264, Processing Time 0.028 seconds

ANTERIOR SEGMENTAL MAXILLARY OSTEOTOMY USING CUPAR'S METHOD : PRELIMINARY STUDY (쿠퍼씨 방법을 이용한 상악 전방부 골절단술)

  • Kim, So-Young;Kim, Su-Gwan;Lee, Sang-Ho;Kim, Soo-Heung;Chung, Tae-Young;Ahn, Tae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.23 no.5
    • /
    • pp.422-427
    • /
    • 2001
  • Anterior segmental osteotomy were performed in 8 patients with Angle's II malocclusion or anterior maxillary protrusion. Cupar's method was used for operation. The period of follow up for patients were 15 months by average. This study discussed the postoperative complications and soft tissue change after anterior segmental maxillary osteotomy. There are not specific major complications.

  • PDF

Effects of Surface Loading on the Behavior of Soil-Reinforced Segmental Retaining Walls (상재하중이 블록식 보강토 옹벽의 거동에 미치는 영향)

  • 유충식;김주석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.109-116
    • /
    • 2000
  • This paper presents the results of investigation on the effects of surface loading on the performance of soil-reinforced segmental retaining walls using the finite element method of analysis. A parametric study was performed by varying location of surface loading. The results of the analyses indicate that the increment of the reinforcement tensile load due to the presence of surface load may be significantly over-estimated when using the conventional approach. Furthermore, the external stability should be carefully examined when a surface loading is present just outside the reinforced soil zone. The implications of the findings from this study to current design approaches are discussed in detail.

  • PDF

Numerical simulation by the finite element method of the constructive steps of a precast prestressed segmental bridge

  • Gabriela G., Machado;Americo Campos, Filho;Paula M., Lazzari;Bruna M., Lazzari;Alexandre R., Pacheco
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.163-177
    • /
    • 2023
  • The design of segmental bridges, a structure that typically employs precast prestressed concrete elements and the balanced cantilever construction method for the deck, may demand a highly complex structural analysis for increased precision of the results. This work presents a comprehensive numerical analysis of a 3D finite element model using the software ANSYS, version 21.2, to simulate the constructive deck stages of the New Guaiba Bridge, a structure located in Porto Alegre city, southern Brazil. The materials concrete and steel were considered viscoelastic. The concrete used a Generalized Kelvin model, with subroutines written in FORTRAN and added to the main model through the customization tool UPF (User Programmable Features). The steel prestressing tendons used a Generalized Maxwell model available in ANSYS. The balanced cantilever constructive steps of a span of the New Guaiba Bridge were then numerically simulated to follow the actual constructive sequence of the bridge. A comparison between the results obtained with the numerical model and the actual vertical displacement data monitored during the bridge's construction was carried out, showing a good correlation.

Analytical Study on the Inelastic Behavior of Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 비탄성거동에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.29-40
    • /
    • 2005
  • The purpose of this study is to investigate the inelastic behavior of precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for the inelastic behavior of precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

The Novel Method of Segmental Bio-Impedance Measurement Based on Multi-Frequency for a Prediction of risk Factors Life-Style Disease of Obesity (비만관련 생활습관병 위험인자 예측을 위한 다중 주파수 기반의 분할 체임피던스 측정법)

  • Kim, Eung-Seok;Noh, Yeon-Sik;Seo, Kwang-Seok;Park, Sung-Bin;Yoon, Hyung-Ro
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.5
    • /
    • pp.375-384
    • /
    • 2010
  • The purpose of this study is to determine whether there is a correlation between the segmental bio-impedance measurement with the frequency modulations and the life-style disease of obesity. An obesity is not simply the factor for estimating the life-style disease of obesity, but also the risk factor occurring. There are many methods (BMI, WHR, Waist, CT, DEXA, BIA, etc.) for measuring a degree of obesity; the bio-impedance measurement is more economic and more effective than others. The physical examination, the blood test, the medical imaging diagnosis and the bio-impedancemeasurementswithmultiple frequencies for each body parts have been conducted for 77 people. The estimated value has been calculated through a segmental bio-impedance model based on multi-frequency that was created to reflect the highest correlation by analyzing correlation with linear regression analysis method for the measured bio-impedance and the risk factors. Then we compared with the clinical diagnosis. In case of high level cholesterol, low HDL-C and high LDL-C for life-style disease, the sensitivity is 80~100%and the specificity is 83~100%. This study has shown conclusively that bio-impedance can be a possible predictor to analyze the disease risk rate of population and individual health maintenance. And also the multi-frequency segmental bio-impedance can be used as early predictor to estimate the life-style disease of obesity.

Analytical Study on Joints in Precast Segmental Prestressed Concrete Bridge Piers (조립식 프리스트레스트 콘크리트 교각의 접합부에 관한 해석적 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.79-87
    • /
    • 2007
  • This paper presents an analysis procedures of Joints in precast segmental prestressed concrete bridge piers. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. An unbended tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly developed to predict the inelastic behaviors of segmental joints. The proposed numerical method for joints in precast segmental prestressed concrete bridge piers is verified by comparison with reliable experimental results.

Performance Assessment of Precast Concrete Segmental Bridge Columns with Shear Resistance Connecting Structure (전단저항 연결체를 갖는 프리캐스트 세그먼트 교각의 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kim, Seong-Woon;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.591-601
    • /
    • 2008
  • The purpose of this study was to investigate the performance of precast concrete segmental bridge columns with shear resistance connecting structure. The system can reduce work at a construction site and makes construction periods shorter. A model of precast concrete segmental bridge columns with shear resistance connecting structure was tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. An bonded or unbonded tendon element based on the finite element method, that can represent the interaction between tendon and concrete of prestressed concrete member, is used. A joint element is newly modified to predict the inelastic behaviors of segmental joints. The proposed numerical method gives a realistic prediction of performance throughout the loading cycles for several test specimens investigated.

A Case Study on Collapsed Geosynthetic Reinforced Segmental Retaining Wall (블록식 보강토옹벽의 붕괴사례 연구)

  • Kim, Byoung-Il;Yoo, Wan-Kyu;Kim, Kyeong-Mo;Lee, Bong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2006-2012
    • /
    • 2013
  • This case study deal with the investigation of various causes and analyses concerning the cases of the collapse of reinforced segmental retaining walls installed for newly constructing a peripheral road within the campus of ${\bigcirc}{\bigcirc}$ University located in Gyeonggi-do. As results of stability analyses and reviewing of design documents concerning collapsed reinforced segmental retaining walls, such a collapse appeared because of problems related to construction including poor-compacted backfill, the omission of the investigation on the bearing capacity, the length and space in the installation of reinforced materials, and drainage systems. Also, problems during diverse types of designing were confirmed involving the stability analysis of the entire slope stability to be considered during designing and failure in application of the proposed methods of FHWA or NCMA which are generally used for two-tier reinforced segmental retaining walls. In addition, based on these details of the stability assessment, the study proposed reinforcement solutions and construction methods for stabilizing reinforced segmental retaining walls to be reconstructed in the future.

Analysis of the Segmental Reinforced Retaining Wall Behavior by Field Monitoring (현장계측을 통한 블럭식 보강토 옹벽의 거동분석)

  • Shin, Eun Chul;Lee, Chang-Seup
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 2004
  • Geogrid reinforced soil structures with segmental block facing have been increased since 1990's, because of the convenience of installation and the flexible appearance. In this paper, the behavior of the segmental reinforced retaining wall was analysed with the results of field monitoring. The height and length of reinforced wall are 12m and 25m, respectively. The field measurement equipments are horizontal and vertical earth pressure cells, settlement plate, strain gauge, inclinometer, and displacement pin. Based on the field monitoring, the horizontal earth pressure was approximately 0.3times higher than that of the theoretical method and the maximum tensile strength of reinforcement was 26.2kN/m. The displacement of facing wall was 23mm at the point of 7.1m height of the wall and toward the wall facing. The results of the study indicate that the segmental reinforced retaining wall is in a stable condition because of good compaction & reinforcement effects, and long period of construction time. Finally, the computer program of SRWall is very useful tool to design the segmental reinforced retaining wall.

  • PDF

Validation of Segmental Multi-Frequency Bioelectrical Impedance Analysis based on the Segmental Bioelectrical Impedance analysis in the Elderly Population (분절임피던스를 기준한 분절다주파수 생체임피던스의 일치도 분석)

  • Tang, Sae-Jo;Kim, Jang-Hee;Eom, Jin Jong;Eom, Sunho;Kim, Hakkyun;Kim, Chul-Hyun
    • Journal of Platform Technology
    • /
    • v.9 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • A frequently used bioimpedance analytical method in Korea is the segmental multi-frequency BIA (SMF-BIA) method, but it is not directly determined at a segmented impedance. This study was to compare SMF-BIA determinations with direct segmented determinations for accuracy and appropriateness of segment parameters. This study is to compare the segment parameters, accuracy and appropriateness of the multi-frequency segmental bioimpedance analysis. To this end, 108 elderly individuals were measured. Segmented bioelectrical measurements obtained from a SMF-BIA (Inbody S10) at 50 kHz and measured with a phase sensitive single frequency device (SF-BIA, bia-101, RJL / akern systems) were compared. The significant difference (%) was demonstrated between single - and multiple frequency determinations of the right upper limb (R = 35.5 ± 6.2%, P < 0.001; Xc = 2.7 ± 7.6%, P < 0.01), left upper limb difference (R= 33. 9 ± 6.0%, P < 0.001; Xc = 2.8 ± 8.3%, P < 0.01), right lower limb difference (R = 18.6 ± 4.3%, P < 0.001; Xc = 25.8 ± 10.0%, P < 0.001), left lower limb difference (R = 18.0 ± 4.7%, P < 0.001; Xc = 31.8%). Of the results determined with the two BIA methods, the impedance measurements of the limbs and whole body showed a high correlation (RA: R = 0. 950, LA: R = 0. 949, RL: R = 0.899, LL: R = 0.88), and in the agreement test, the impedance values of the upper limbs and whole body also showed strong agreement (ICC > 0.9), but in the Xc, the correlation was weak. In conclusion, it was found that although bioimpedance devices had significantly different characteristics and inconsistent cross sectionally, there was a high population level agreement in the upper and lower extremities in determining segmental resistance value changes. But a large error was found on the trunk. Further studies were needed for reducing the error.