• Title/Summary/Keyword: Sediment management

Search Result 516, Processing Time 0.024 seconds

Analysis of Characteristics of Landslide Susceptibility in Rugged Mountain Range in the Korean National Park (산악형 국립공원지역의 산사태 발생과 취약지역 특성 분석)

  • Lee, Sung-Jae;Lee, Eun-Jai;Ma, Ho-Seop
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.552-561
    • /
    • 2019
  • In korea, debris-flow disasters are induced by typhoon and localized torrential rainfall annually. These disasters are particularly severe in the Korean national park due to its geomorphological characteristics. This study was conducted to analyze the landslide characteristics and forest environmental factors of landslide areas located in rugged mountain range in the Korean national park (Mt. Seorak, Mt. Jiri, and Mt. Sobaek). Overall, landslides occurred at 474 sites. The average area of the landslide scar among these sites was 1,212 ㎡. The average landslide sediment was 1,389 ㎥, average landslide length was 75 m, and the average width was 12.9 m. The landslides frequently occurred in regions with igneous rock and coniferous forest. In addition, slope gradient degree (31°-40°), slope gradient direction (N), vertical slope (concave), cross slope (concave), altitude (401-800 m), position (middle), stream order (first order), forest type (mixed), parent rock (igneous), and soil depth (<46 cm). The relationship between landslide soil volume and environmental factors showed positive correlation. The variables of vertical slope (complex), altitude (<1,201 m), and soil depth (<46 cm) correlated significantly at 1 % level.

Suggestion of Appropriate Design and Maintenance in a Constructed Wetland using Monitoring Results (현장조사 결과를 이용한 인공습지 적정 설계 및 유지관리 방안 도출)

  • Lee, So young;Choi, Ji yeon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.428-435
    • /
    • 2015
  • Constructed wetlands (CWs) have been accepted as an attractive and economic alternative to a variety of pollution control and provided potentially valuable wildlife habitat in urban and suburban areas, as well as esthetic value within the local natural environment. CWs are known eco-friendly technology to solve the problem of the climate change and urbanization issues. Numerous studies have been published on the various aspects of a CW. However, there are current limitations about the CW operations such as few design guidelines, poor performance results regarding the simple construction. Therefore, the objective of this research was to suggest an appropriate design and maintenance guidelines for a CW by thorough investigation of site monitoring results. The research also concentrated in redefining and reclassifying CWs, based on literatures made by the Ministry of Environment (MOE) and other organizations. Investigation at 43 CWs in Korea was performed by using collected data and by performing site survey from 2013 to 2014. Based on the results, the best practices among the investigated CWs provided water treatment, wildlife habitat, environmental education, and leisure. Also these CWs conducted a regular maintenance such as vegetation, sediment dredging and cleaning of facilities. Results obtained are intended for use by academics and any organizations involved in CW management.

Analysis on the Damage Status by Diagnostical Methodology for the Improvement Landscape on the Supyo-bridge at Chunggae-stream (청계천 수표교(水標橋)의 경관 향상을 위한 진단학적(診斷學的) 훼손상태 분석)

  • An, Jin-Sung;Choi, Ah-Hyun;Kim, Yu-Il
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.28 no.3
    • /
    • pp.105-113
    • /
    • 2010
  • This study is for the preservation plan of the tradition space which is performed by the damage status analysis through performing the value assessment. Especially, it is an experimental study for finding the process and methods by analyzing the major element for the value assessment of the selected object's damage status through the expert group who are systematized in their interest to conserve the traditional structure in traditional space. For that purpose, this study should be performed by the fundamental understanding of the physical property of the Supyo-bridge and the condition of the selected site's environment. Meanwhile, this study has been done that 'map of the damage status distribution' for making records of damage status of the Supyo-bridge on the property utilized field measurement adapted by photogrammetry and assessment guidelines, which are for investigation on damage status of objects that are standardized 'Raccomandazioni Normal' which could be said construction culture assets management guidelines of Italian government. As the result of investigation, damage status of each part in the Supyo-bridge was mostly composed of damage by sediment and corrosion and in case of 9 damage types including corrosion, in consideration of physical and chemical properties and distribution status of those elements, it is made an judgement that is not working as a threatened factor regarding security of the Supyo-bridge. On the contrary, for the improvement landscape, in case of 'Thermoclastism' phenomenon observed in 'upper floor', 'Myungae stone' and 'bridge pier' is that when taking it into consideration that is widely distributed concentrated on the bridge pier, surface reinforcement job along with elimination of damage part will be judged to be requested for earliest treatment.

Erosion and Recovery of Coastal Dunes after Tropical Storms (태풍의 통과로 인한 해안사구 지형의 침식과 회복)

  • Choi, Kwang Hee;Jung, Pil Mo;Kim, Yoonmi;Suh, Min Hwan
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2012
  • Coastal dunes help stabilize the coastal landscape and protect the hinterland through dynamic interaction with sand beaches. Sometimes dune erosion occurs during the tropical cyclones, while dune recovery may naturally follow after the event. As the typhoon Kompasu passed through the Korean Peninsula early-September in 2010, it caused a rise in water in association with the storm, wave run-ups, and heavy rains in coastal areas. As the result, coastal dunes along the west coast of Korea were severely damaged during the storm. However, the degree and extent of erosion and recovery of dunes were found to be related with the condition of beach-dune systems including gradients of foreshore and front slope of the dune, sediment supply, vegetation, wind activity, and human interferences. Some dunes retreated landward more and more after the erosional event, while others recovered its original profile by aeolian transport processes mainly during the winter season. Vegetated dunes with pine trees were less recovered after the erosion than grass-covered dunes. In addition, dunes with artificial defense were more eroded and less recovered than those without hard constructions. According to the observation after the severe storm, it is likely that the sand transport process is critical to the dune recovery. Therefore, the interactions between beach and dune must be properly evaluated from a geomorphological perspective for the effective management of coastal dunes, including natural recovery after the erosion by storm events.

Characteristics of Hypoxic Water Mass Occurrence in the Northwestern Gamak Bay, Korea, 2017 (2017년 한국 가막만 북서내만해역 빈산소수괴 발생의 특성)

  • Jeong, Hui-Ho;Choi, Sang-Duk;Cho, Hyeon-Seo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.708-720
    • /
    • 2021
  • As hypoxia adversely affects the marine environment in northwestern Gamak Bay every summer, the present study determined its comprehensive occurrence mechanisms using the Multiple Regression Analysis (MRA) and suggested management directions based on the primary MRA factors. The first hypoxia occurred by thermocline related to weather conditions, with organic matter deposited inside the bay on 26th June, 2017. Additionally, on 12th July, halocline was also developed by increased rainfall, and the hypoxia was most expanded horizontally and vertically. The primary factors were the stratification and deposited organic matter. In contrast, the hypoxia correlated to phytoplankton growth and deposited organic matter on 8th August was diminished with remarkably less precipitation. However, the stable halocline was caused by massive precipitation, and the reproduced phytoplankton re-generated the expanded hypoxia on 16th August despite a short sampling interval. Subsequently, the hypoxia influenced by the deposited organic matter spread shallowly along the seafloor on 13th September as the extinction period. These results suggest that stratification alleviation technologies, and the improvement and removal of the organic matter deposited on the surface sediment are necessary.

Classification of Soil Creep Hazard Class Using Machine Learning (기계학습기법을 이용한 땅밀림 위험등급 분류)

  • Lee, Gi Ha;Le, Xuan-Hien;Yeon, Min Ho;Seo, Jun Pyo;Lee, Chang Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.3
    • /
    • pp.17-27
    • /
    • 2021
  • In this study, classification models were built using machine learning techniques that can classify the soil creep risk into three classes from A to C (A: risk, B: moderate, C: good). A total of six machine learning techniques were used: K-Nearest Neighbor, Support Vector Machine, Logistic Regression, Decision Tree, Random Forest, and Extreme Gradient Boosting and then their classification accuracy was analyzed using the nationwide soil creep field survey data in 2019 and 2020. As a result of classification accuracy analysis, all six methods showed excellent accuracy of 0.9 or more. The methods where numerical data were applied for data training showed better performance than the methods based on character data of field survey evaluation table. Moreover, the methods learned with the data group (R1~R4) reflecting the expert opinion had higher accuracy than the field survey evaluation score data group (C1~C4). The machine learning can be used as a tool for prediction of soil creep if high-quality data are continuously secured and updated in the future.

The Study of Wave, Wave-Induced Current in CHUNG-UI Beach (충의휴양소 전면 해수욕장의 파랑 및 해빈류에 관한 연구)

  • Chang, Pyong-Sang;Bae, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.142-149
    • /
    • 2019
  • In this study, the past erosion history and current status in the CHUNG-UI beach of Eulwang-dong, Jung-gu, Incheon-Si, South Korea were investigated and analyzed the wave with wave-induced current to investigate the causes of coastal erosion. As a result, the significant wave height ($H_{1/3}$) was in the range of 0.07~1.57 m and the mean value was 0.21 m. The maximum wave height ($H_{max}$) was in the range of 0.02-4.76m and the mean value was 0.27m. The vertical wave height and cycles were estimated through numerical model experiments of wave transformation. The 50-year frequency design wave height ranged from 0.82m to 3.75m. As a result of the experiment of wave-induced current, wave-induced current in the CHUNG-UI beach was decreased after the installation of the Detached breakwater and the Jetty. On the other hand, when the crest elevation was increased up to 5 m, there was no significant change, but when the crest elevation was increased to 8m, strong wave-induced current occurred around the submerged breakwaters due to lowered depth of water. In addition, the main erosion of the CHUNG-UI beach is due to the intensive invasion of the wave characteristics coming from the outer sea into the white sandy beach. The deformation of the wave centered on the front of the sandy beach caused additional longshore currents flowing parallel to the sandy beach and rip currents in the transverse direction, thus confirming that the longshore sediment was moved out of the front and out of the sea. The results of this study can be used as preliminary data for the recovery of the sand and the selection of efficient erosion prevention facilities.

Fluvial Processes and Vegetation - Research Trends and Implications (하천과정과 식생 - 연구동향과 시사점)

  • Woo, Hyoseop;Cho, Kang-Hyun;Jang, Chang Lae;Lee, Chan Joo
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.2
    • /
    • pp.89-100
    • /
    • 2019
  • We've reviewed existing studies on the interactions among vegetation, hydrology, and geomorphology in the stream corridors, adding one more factor of vegetation in the traditional area of hydro-geomorphology. Understanding of the interactions among those three factors is important not only academically but also practically since it is related intimately to the restoration of river corridor as well as management itself. Studies of this area started from field investigations in the latter part of the 20th century and focused on the flume experiments and then computer modelling in the 1990s and 2000s. Now, it has turned again to the field investigations of specific phenomena of the vegetative-hydrologic-geomorphologic interactions in detailed micro scales. Relevant studies in Korea, however, seem to be uncommon and far behind the international status quo in spite that practically important issues related directly to this topic have been emerged. In this study, we propose, based on the extensive literature review and authors' own knowledge and experiences, a conceptual diagram expressing the interactions among vegetation, flow (water), sediment, and geomorphology. Existing relevant studies in Korea since the 1990s are classified according to the categorization in the proposed diagrams and then briefly reviewed. Finally, considering the practical issues of riparian vegetation that have emerged recently in Korea, we propose areas of investigation needed in near future such as, among others, long-term and systematic field investigations and monitoring at multiple river corridors having different attributes on vegetative-hydrologic-geomorphologic interactions, including vegetative dynamics for succession.

Typhoon Induced Changes of the Phytoplankton at Bok-gyo Bridge Area in Juam Lake (태풍에 의한 주암호복교지점의 식물플랑크톤 변화)

  • Cho, Ki An;Lee, Hak Young
    • Korean Journal of Ecology and Environment
    • /
    • v.51 no.4
    • /
    • pp.253-258
    • /
    • 2018
  • Phytoplankton community was studied in relation to a typhoon at Bok-gyo Bridge area in Juam Lake, Korea. In August 31, 2000, a typhoon (Prapiroon) was passed by Juam Lake with great power enough to destroy summer stratification of Juam Lake. Destratification resulted in temporal mixing of the whole water column and changed the physical and chemical properties of water bodies, and caused the changes of the biological properties. The transparency decreased from 195 cm before the typhoon to 84 cm after the typhoon with the resuspension of the bottom sediment. In the vertical distribution of the phytoplankton population, the maximum population was measured at depth of 2 m before the typhoon. However, immediately after the typhoon, the population distributed evenly throughout the entire water layers. The carbon biomass of the phytoplankton was also highest at the depth of 2 m before the typhoon, but immediately after the typhoon, it was uniformly distributed throughout the whole water layers. The vertical profiles of the concentrations of chlorophyll a, however, did not show a significant difference before and after the typhoon. The typhoon induced destratification and restratification altered the taxa of the phytoplankton. The major dominant phytoplankton taxa before the typhoon was diatoms including Aulacoseira granulata, but the green algae overwhelmed the diatoms in cell number and biomass after the typhoon. The chlorophycean dominance was replaced by cyanophycean dominance with the heavy rain and descent of water temperture at the end of September.

Threshold Condition for Exclusion of Riprap into Bypass Pipe (저층수 배출관에 유입된 사석의 배제 한계조건)

  • Jeong, Seokil;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.57-66
    • /
    • 2019
  • One of the most serious problems with concrete small dams or barriers installed in small/median rivers is the deposit of sediments, especially, in Korea. An effective way to discharge such sediments to downstream is to construct a bypass pipe under the river bed. However, efficiency may become lowered if ripraps are entered into the bypass pipe. Therefore, in this study, we derived the threshold condition for the exclusion of ripraps from the bypass pipe using 3D numerical analysis. Upstream flow of the small dam was assumed to be stationary, and the energy concept was applied to the control volume containing the bypass pipe and its periphery. As a result, when the ratio of the water level difference between upstream and downstream to the diameter of the riprap was approximately equal to 1.2, the threshold condition for exclusion of the stones or riprap from the bypass pipe was affirmatively determined. If the characteristics of the adsorptive sediment adversely affecting the river environment in the future would be taken into account, results from this study are expected to put to practical use in the management of concrete small dam with bypass pipe system.