• Title/Summary/Keyword: Security of IoT

Search Result 927, Processing Time 0.025 seconds

Scheme of Secure IoT based Group communication (확장성과 보안을 보장하는 IoT 디바이스 기반의 그룹통신 기법)

  • Kim, Ki-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.98-103
    • /
    • 2021
  • In this study, we propose a group communication technique that guarantees security and expandability by configuring a network consisting of IoT terminals equipped with security functions. As the number of devices participating in the network increases, network resources are proportionally reduced, and adding a security function to the IoT device increases the delay time due to encryption in the IoT device. If the error rate that occurs in the network increases, network resources are quickly consumed due to retransmission. Therefore, IoT terminals are grouped to ensure scalability while supporting security, reducing the consumption of network resources even when the number of participating nodes increases, thus ensuring scalability. For the future implementation, the encryption method used in IoT terminals considered the standard of IEEE802.5.4, and the standardization trend was investigated and classified. The proposed method applies IoT devices that provide security functions of the IEEE802.5.4 standard to the group communication base to ensure reliability and scalability. In the performance evaluation, the effectiveness of the proposed method was confirmed by comparing the delay times when grouping IoT devices with security functions through simulation.

A Design for Security Functional Requirements of IoT Middleware System (IoT(Internet of Things) 시스템 미들웨어 보안기능요구사항 설계)

  • Jung, Hyun Mi;Jeong, Kimoon;Cho, Han Jin
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.11
    • /
    • pp.63-69
    • /
    • 2017
  • The middleware in the IoT system is software that acts as a messenger to connect and exchange data between humans and objects, objects and objects. IoT middleware exists in various forms in all areas, including hardware, protocol, and communication of different kinds, which are different in form and purpose. However, IoT middleware exists in various forms across different areas, including hardware, protocol, and communication of different types and purposes. Therefore, even if the system is designed differently for each role, it is necessary to strengthen the security in common. In this paper, we analyze the structure of IoT middleware using Service Oriented Architecture(SOA) approach and design system security requirements based on it. It was defined: Target Of Evaluation(TOE) existing system development method and the object is evaluated by Common Criteria(CC) for verification based otherwise. The proposed middleware system will be correlated with the security problem definition and the security purpose, which will be the basis for implementing the security enhanced IoT system.

Technology and Policy Post-Security Management Framework for IoT Electrical Safety Management (IoT 제품의 안전 관리를 위한 기술 및 정책적 사후 보안관리 프레임워크)

  • Lee, Donghyeok;Park, Namje
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1879-1888
    • /
    • 2017
  • The Internet of Things (IoT) environment has been gradually approaching reality, and although it provides great convenience, security threats are increasing accordingly. For the IoT environment to settle safely, careful consideration of information security is necessary. Although many security measures in the design and development stages of IoT products have been studied thus far, apart from them, the establishment of systems and countermeasures for post management after the launch of IoT products is also very important. In the present paper, a technical and policy post-security management framework is proposed to provide secure IoT environments. The proposed framework defines the concrete response procedures of individual entities such as users, manufacturers, and competent authorities in the case of the occurrence of security flaws after launching IoT products, and performs appropriate measures such as software updates and recalls based on an assessment of the risk of security flaws.

Open Research Problem for effective IoT Authentication

  • Mihir Mehta;Kajal Patel
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.8
    • /
    • pp.174-178
    • /
    • 2024
  • IoT is collection of different "things" which are associated with open web. As all the things are connected to the Internet, it offers convenience to end users for accessing the resources from "Any Where, Any Time" throughout the globe. At the same time, open nature of IoT provides a fertile ground to an intruder for launching different security related threats. If we can no apply proper security safeguards to the IoT System, then it will be not useful to society. Authentication, Encryption, Trust Management and Secure Routing are different domains to offer security in IoT system. Among them, Authentication is very much important security service as it validates device identity before granting access to system services/ resources. Existing IoT Authentication algorithms are fail to verify device identity in unambiguous way. They are vulnerable to different security threats such as Key Stolen threat, MITM threat and Location Spoofing threat. So, it is a demand of time to design an efficient and secure Multi-factor IoT algorithm which can offer better security and validate device identity in unambiguous way.

Use of Blockchain to Support the Security of Internet of Things: A Review

  • Saher Un Nisa;Maryam Khalid
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.149-154
    • /
    • 2023
  • Internet of Things (IoT) is now spreading everywhere. It's the technology of every person's need so we can't step back from IoT but we can secure it as it is spreading quickly so it has greater chances of danger and being misused. There is an urgent need to make IoT devices secure from getting cracked or hacked. A lot of methods had tried and still trying to mitigate IoT security issues. In this paper Blockchain is going to be the solution of most of the IoT issues or problems. We have discussed or highlighted security issues with centralized IoT and then provided solution of such security challenges through the use of blockchain because is based on a decentralized technology that is hard to modify or update.

Enhancing Internet of Things Security with Random Forest-Based Anomaly Detection

  • Ahmed Al Shihimi;Muhammad R Ahmed;Thirein Myo;Badar Al Baroomi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2024
  • The Internet of Things (IoT) has revolutionized communication and device operation, but it has also brought significant security challenges. IoT networks are structured into four levels: devices, networks, applications, and services, each with specific security considerations. Personal Area Networks (PANs), Local Area Networks (LANs), and Wide Area Networks (WANs) are the three types of IoT networks, each with unique security requirements. Communication protocols such as Wi-Fi and Bluetooth, commonly used in IoT networks, are susceptible to vulnerabilities and require additional security measures. Apart from physical security, authentication, encryption, software vulnerabilities, DoS attacks, data privacy, and supply chain security pose significant challenges. Ensuring the security of IoT devices and the data they exchange is crucial. This paper utilizes the Random Forest Algorithm from machine learning to detect anomalous data in IoT devices. The dataset consists of environmental data (temperature and humidity) collected from IoT sensors in Oman. The Random Forest Algorithm is implemented and trained using Python, and the accuracy and results of the model are discussed, demonstrating the effectiveness of Random Forest for detecting IoT device data anomalies.

Blockchain-Based IoT Device Authentication Scheme (블록체인 기반 IoT 디바이스 인증 스킴)

  • Park, Byeong-ju;Lee, Tae-jin;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.2
    • /
    • pp.343-351
    • /
    • 2017
  • With ICT technology develops, IoT environment is attracting attention. However, IoT devices have various CPU performance as much as various purpose of use. Some IoT devices use the cpu that doesn't support public key cryptogrphy or crypto acceleration. In this paper, we study Blockchain-based IoT Device Authentication Scheme that provides authentication, integirity and non-repudation through analysis of Lamport Hash-chain, Lamport Signature, Blockchain and existing Authentication protocols. The proposed scheme requires only simple hash operation in IoT devices and it can operate in low performance IoT device, thus ensuring secure authentication in IoT environment.

Technologies Analysis based on IoT Security Requirements and Secure Operating System (IoT 보안 요구사항 및 보안 운영체제 기반 기술 분석)

  • Ko, Jae-Yong;Lee, Sang-Gil;Kim, Jin-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.164-177
    • /
    • 2018
  • As the market for IoT devices grows, it is expected that the scale of malware attack will be considerable. Accordingly, the improvement of related legislation has been actively promoted, the recently strengthened Information and Communication Network Act was enforced. Because IoT related accidents can lead to not only financial damages but also human accidents, IoT device Security has been attracted a great deal of attention. In this paper, IoT devices provide essential security functions through legal and technical perspectives, and analyze related technologies. This can be used to a reference for the Start-up developer and IoT device designer.

IoT Industry & Security Technology Trends

  • Park, Se-Hwan;Park, Jong-Kyu
    • International journal of advanced smart convergence
    • /
    • v.5 no.3
    • /
    • pp.27-31
    • /
    • 2016
  • High-tech industries in a state well enough to troubleshoot hacking information introduction a big barrier to delay the growth of the market related to IoT(Internet of Things) as is likely to be on the rise. This early on, security issues introduced in the solution, a comprehensive solution, including the institutional laws/precautions needed. Recent examples of frequent security threats while IoT is the biggest issue of introducing state-of-the-art industry information due to the vulnerable security hacking. This high-tech industries in order to bridge the information responsible for the target attribute, target range, and the protection of security and how to protect the subject, IoT environment (domestic industrial environment) considering the approach is needed. IoTs with health care and a wide variety of services, such as wearable devices emerge. This ensures that RFID/USN-based P2P/P2M/M2M connection is the implementation of the community. In this study, the issue on the high-tech industrial information and the vulnerable security issues of IoT are described.

Interoperable Security Framework for Heterogeneous IoT Platforms (이종 사물인터넷 플랫폼 간 보안 상호운용을 위한 프레임워크)

  • Oh, Se-Ra;Kim, Young-Gab
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.3
    • /
    • pp.81-90
    • /
    • 2018
  • Due to the dramatic advancement of IoT (Internet of Things), it is expected that tens of billions of IoT devices will be connected by the year 2024. Furthermore, as IoT technologies evolves, the security management in IoT platforms has become a critical issue. For example, there are interworking problems between heterogeneous IoT platforms caused by differences from communication protocols, security policies, etc. in each platform. In addition, unsecured interworking can cause major security issues including the information leakage. In this paper, in order to solve these problems, a security interworking architecture is proposed and implemented in both FIWARE and oneM2M, which are representative IoT platforms. First, the security architecture of FIWARE is analyzed and implemented, and then the security framework based on OAuth 2.0 is developed on Mobius platform. Finally, in order to validate the proposed security interworking architecture, a LED (Light-Emitting Diode) example, where the LED is controlled by only authorized users, is developed. The proposed architecture can be extended to the diverse IoT platforms and devices.