• Title/Summary/Keyword: Security and Authentication

Search Result 2,421, Processing Time 0.023 seconds

Improved Secure Remote User Authentication Protocol

  • Lee, Ji-Seon;Park, Ji-Hye;Chang, Jik-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.931-938
    • /
    • 2009
  • Recently, Holbl et al. proposed an improvement to Peyravian-Jeffries's password-based authentication protocol to overcome some security flaws. However, Munilla et al. showed that Holbl et al.'s improvement is still vulnerable to off-line password guessing attack. In this paper, we provide a secure password-based authentication protocol which gets rid of the security flaws of Holbl et al.'s protocol.

Design of Improved Authentication Protocol for Sensor Networks in IoT Environment (사물인터넷 환경에서 센서 네트워크에 대한 개선된 인증 프로토콜 설계)

  • Kim, Deuk-Hun;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.467-478
    • /
    • 2015
  • Recently interest in Internet of Things(IoT) is increasing, and a variety of the security technologies that are suitable for Internet of Things has being studied. Especially sensor network area of the device is an increased using and diversified for a low specification devices because of characteristic of the Internet of Things. However, there is difficulty in directly applying the security technologies such as the current authentication technologies to a low specification device, so also increased security threats. Therefore, authentication protocol between entities on the sensor network communication in Internet of Things has being studied. In 2014, Porambage et al. suggested elliptic curve cryptography algorithm based on a sensor network authentication protocol for advance security of Internet of Things environment, but it is vulnerability exists. Accordingly, in this paper, we analyze the vulnerability in elliptic curve cryptography algorithm based on authentication protocol proposed by Porambage et al. and propose an improved authentication protocol for sensor networks in Internet of Things environment.

A STUDY ON IMPROVED PKMv2 FRAMEWORK FOR FAST MOBILITY IN 802.16e NETWORKS

  • Suh, Gi-Jun;Yun, Seung-Hwan;Yi, Ok-Yeon;Lee, Sang-Jin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.400-403
    • /
    • 2009
  • EAP (Extensible Authentication Protocol) is often used as an authentication framework for two-party protocol which supports multiple authentication algorithms known as "EAP method". And PKMv2 in 802.16e networks use EAP as an authentication protocol. However, this framework is not efficient when the EAP peer executing handover. The reason is that the EAP peer and EAP server should re-run EAP method each time so that they authenticate each other for secure handover. This makes some delays, so faster re-authentication method is needed. In this paper, we propose a new design of the PKMv2 framework which provides fast re-authentication. This new framework and usage of the keys which used as a short-term credential bring better performance during handover process.

  • PDF

Efficient and Security Enhanced Evolved Packet System Authentication and Key Agreement Protocol

  • Shi, Shanyu;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.1
    • /
    • pp.87-101
    • /
    • 2017
  • As people increasingly rely on mobile networks in modern society, mobile communication security is becoming more and more important. In the Long Term Evolution/System Architecture Evolution (LTE/SAE) architecture, the 3rd Generation Partnership (3GPP) team has also developed the improved Evolved Packet System Authentication and Key Agreement (EPS AKA) protocol based on the 3rd Generation Authentication and Key Agreement (3G AKA) protocol in order to provide mutual authentication and secure communication between the user and the network. Unfortunately, the EPS AKA also has several vulnerabilities such as sending the International Mobile Subscriber Identity (IMSI) in plain text (which leads to disclosure of user identity and further causes location and tracing of the user, Mobility Management Entity (MME) attack), man-in-middle attack, etc. Hence, in this paper, we analyze the EPS AKA protocol and point out its deficiencies and then propose an Efficient and Security Enhanced Authentication and Key agreement (ESE-EPS AKA) protocol based on hybrid of Dynamic Pseudonym Mechanism (DPM) and Public Key Infrastructure (PKI) retaining the original framework and the infrastructure of the LTE network. Then, our evaluation proves that the proposed new ESE-EPS AKA protocol is relatively more efficient, secure and satisfies some of the security requirements such as confidentiality, integrity and authentication.

Risk Analysis on Various Contextual Situations and Progressive Authentication Method based on Contextual-Situation-based Risk Degree on Android Devices (안드로이드 단말에서의 상황별 위험도 분석 및 상황별 위험도 기반 지속인증 기법)

  • Kim, Jihwan;Kim, SeungHyun;Kim, Soo-Hyung;Lee, Younho
    • Journal of KIISE
    • /
    • v.43 no.10
    • /
    • pp.1154-1164
    • /
    • 2016
  • To prevent the use of one's smartphone by another user, the authentication checks the owner in several ways. However, whenever the owner does use his/her smartphone, this authentication requires an unnecessary action, and sometimes he/she finally decides not to use an authentication method. This can cause a fatal problem in the smartphone's security. We propose a sustainable android platform-based authentication mode to solve this security issue and to facilitate secure authentication. In the proposed model, a smartphone identifies the current situation and then performs the authentication. In order to define the risk of the situation, we conducted a survey and analyzed the survey results by age, location, behavior, etc. Finally, a demonstration program was implemented to show the relationship between risk and security authentication methods.

Single Sign-On based Authentication System combined with Blockchain (블록체인을 활용한 Single Sign-On 기반 인증 시스템)

  • Im, Jihyeok;Lee, Myeongha;Lee, Hyung-Woo
    • Journal of Internet of Things and Convergence
    • /
    • v.4 no.2
    • /
    • pp.13-20
    • /
    • 2018
  • In this paper, we propose an authentication system that combines 'Single-Sign-On' and 'Token-based authentication' based on 'Block Chain' technology. We provide 'access control' function and 'integrity' by combining block-chain technology with single-sign-on authentication method and provided stateless self-contained authentication function using Token based authentication method. It was able to enhance the security by performing the encryption based Token issuance and authentication process and provided convenience of authentication to Web Server. As a result, we can provide token-based SSO authentication service efficiently by providing a convenient way to improve the cumbersome authentication process.

An Enhanced Privacy-Aware Authentication Scheme for Distributed Mobile Cloud Computing Services

  • Xiong, Ling;Peng, Daiyuan;Peng, Tu;Liang, Hongbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6169-6187
    • /
    • 2017
  • With the fast growth of mobile services, Mobile Cloud Computing(MCC) has gained a great deal of attention from researchers in the academic and industrial field. User authentication and privacy are significant issues in MCC environment. Recently, Tsai and Lo proposed a privacy-aware authentication scheme for distributed MCC services, which claimed to support mutual authentication and user anonymity. However, Irshad et.al. pointed out this scheme cannot achieve desired security goals and improved it. Unfortunately, this paper shall show that security features of Irshad et.al.'s scheme are achieved at the price of multiple time-consuming operations, such as three bilinear pairing operations, one map-to-point hash function operation, etc. Besides, it still suffers from two minor design flaws, including incapability of achieving three-factor security and no user revocation and re-registration. To address these issues, an enhanced and provably secure authentication scheme for distributed MCC services will be designed in this work. The proposed scheme can meet all desirable security requirements and is able to resist against various kinds of attacks. Moreover, compared with previously proposed schemes, the proposed scheme provides more security features while achieving lower computation and communication costs.

Enhanced Security Scheme to Support Secure and Fast ASN-anchored Mobility in Mobile WiMAX

  • Park, Chang-Seop;Kang, Hyun-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.11
    • /
    • pp.2204-2220
    • /
    • 2011
  • Without providing a proper security measure to the handover procedure in Mobile WiMAX, several security attacks can be mounted. Even though security schemes have been previously proposed for this purpose, they are still vulnerable to several security attacks due to fatal design flaws. A newly proposed security scheme in this paper is based on the framework of authentication domain and concept of handover ticket. A method of establishing security associations within the authentication domain is proposed, and a lightweight security measure to protect the management messages associated with the handover is also proposed. Especially, using the handover ticket, the new security scheme can defend against a Redirection Attack arising from a compromised base station. The new security scheme is comparatively analyzed with the previous security schemes in terms of Replay, Session Hijacking, Man-In-The-Middle, and Redirection attacks.

Enhanced Knock Code Authentication with High Security and Improved Convenience

  • Jang, Yun-Hwan;Park, Yongsu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4560-4575
    • /
    • 2018
  • Since smartphone contains various personal data, security is one of the important aspects in smartphone technologies. Up to now, various authentication techniques have been proposed to protect smartphones. The pattern lock on the Android system is one of the most widely used authentication methods for low-cost devices but it is known to be vulnerable to smudge attack or shoulder surfing attack. LG's smartphone uses its own technique, which is called "Knock Code." The knock code completes the authentication by touching the user defined area in turn on the screen. In this paper, we propose the new, enhanced version of knock code by adding the sliding operation and by using flexible area recognition. We conducted security analysis, which shows that under the same password size, the search space is overwhelmingly larger than the original algorithm. Also, by using the sliding operation, the proposed scheme shows resilience against smudge attacks. We implemented the prototype of our scheme. Experimental results show that compared with the original Knock Code and Android pattern lock, our scheme is more convenient while providing better security.

User Authentication System based on Auto Identification and Data Collection (자동인식 및 데이터 수집을 이용한 사용자 인증 시스템)

  • Jeong, Pil-seong;Cho, Yang-hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2018
  • As user of mobile device increases, various user authentication methods are actively researched. The user authentication methods includes a method of using a user ID and a password, a method of using user biometric feature, a method of using location based, and a method of authenticating secondary authentication such as OTP(One Time Password) method is used. In this paper, we propose a user system which improves the problem of existing authentication method and encryption can proceed in a way that user desires. The proposed authentication system is composed of an authentication factor collection module that collects authentication factors using a mobile device, a security key generation module that generates a security key by combining the collected authentication factors, and a module that performs authentication using the generated security key module.