• Title/Summary/Keyword: Secure Network

Search Result 1,499, Processing Time 0.027 seconds

Study on the OMAC-SNEP for Unattended Security System Using Wireless Sensor Networks (무선 센서 네트워크를 이용한 무인 경비 시스템에서의 OMAC-SNEP 기술에 관한 연구)

  • Lee Seong-Jae;Kim Hak-Beom;Youm Heung-Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.1
    • /
    • pp.105-114
    • /
    • 2006
  • Ubiquitous Sensor Network consists of a number of sensor nodes with a limited computation power and limited communication capabilities, and a sensor node is able to communicate with each other at anytime and in any place. Due to the rapid research and development in sensor networks, it will rapidly grow into environments where hmm beings can interact in an intuitive way with sensing objects which can be PDAs, sensors, or even clothes in the future. We are aiming at realizing an Unattended Secure Security System to apply it to Ubiquitous Sensor Network. In this paper, the vulnerabilities in the Unattended security system are identified, and a new protocol called OMAC-SNEP is proposed for the Unattended Secure Security System. Because the CBC-MAC in SNEP is not secure unless the message length is fixed, the CBC-MAC in SNEP was replaced with OMAC in SNEP. We have shown that the proposed protocol is secure for my bit length of messages and is almost as efficient as the CBC-MAC with only one key. OMAC-SNEP can be used not only in Unattended Security System, but also any other Sensor Networks.

A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok;Kim, Yong-Hwan;Lee, Wonhyuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.123-134
    • /
    • 2022
  • Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.

The Secure Communication Method for Build Small World (Small World 구축을 위한 비밀 통신 기법)

  • 배영철;구영덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.705-708
    • /
    • 2004
  • In this paper, we proposed that the secure communication method for build small world. In order to secure communication in the small world, we used Chua's oscillator which well represent the chaos dynamics and composed several stage with Chua's oscillator by using coupled synchronization method. This paper shows a secure communication result in the small world network using coupled synchronization method.

  • PDF

Study of Information Security Management Model in Public Institution (공공기관의 정보보안 관리 모델 연구)

  • Kim, JaeKyeong;Jeong, Yoon-Su;Oh, ChungShick;Kim, JaeSung
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.43-50
    • /
    • 2013
  • Recently, Cyber threats that is doing intelligence and sophistication from the organization's information assets to secure order technical disciplines, as well as managerial and environmental sectors, such as mind-response system is must established. In this paper, possible to analyze the case for the theory in network security, such as the logical network and physical network separation suitable for the corporate environment and constantly respond and manage the Information Security Management Model A secure network design is proposed. In particular, the proposed model improvements derived from the existing network, network improvements have been made in order to design improved ability to respond to real-time security and central manageability, security threats, pre-emptive detection and proactive coping, critical equipment in the event of a dual hwalreu through applied features such as high-availability, high-performance, high-reliability, ensuring separation of individual network security policy integrated management of individual network, network security directional.

Design and Performance Evaluation of the Secure Transmission Module for Three-dimensional Medical Image System based on Web PACS (3차원 의료영상시스템을 위한 웹 PACS 기반 보안전송모듈의 설계 및 성능평가)

  • Kim, Jungchae;Yoo, Sun Kook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.179-186
    • /
    • 2013
  • PACS is a medical system for digital medical images, and PACS expand to web-based service using public network, DICOM files should be protected from the man-in-the-middle attack because they have personal medical record. To solve the problem, we designed flexible secure transmission system using IPSec and adopted to a web-based three-dimensional medical image system. And next, we performed the performance evaluation changing integrity and encryption algorithm using DICOM volume dataset. At that time, combinations of the algorithm was 'DES-MD5', 'DES-SHA1', '3DES-MD5', and '3DES-SHA1, and the experiment was performed on our test-bed. In experimental result, the overall performance was affected by encryption algorithms than integrity algorithms, DES was approximately 50% of throughput degradation and 3DES was about to 65% of throughput degradation. Also when DICOM volume dataset was transmitted using secure transmission system, the network performance degradation had shown because of increased packet overhead. As a result, server and network performance degradation occurs for secure transmission system by ensuring the secure exchange of messages. Thus, if the secure transmission system adopted to the medical images that should be protected, it could solve server performance gradation and compose secure web PACS.

Investigation of Secure Wireless Multihop Ad hoc Network (안전한 무선 Multihop Ad hoc 네트워크를 위한 연구)

  • Lee, Sang-Duck;Park, Jong-An;Han, Seung-Jo;Pyun, Jae-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.118-126
    • /
    • 2007
  • An ad hoc network is a system of wireless mobile nodes that dynamically self-organize in arbitrary and temporary network topologies allowing people and devices to internetwork without any preexisting communication infrastructure. Although ad hoc network is attractive solution, there are still some major flaws that prevent commercial growth. Security is one of these main barriers; ad hoc networks are known to be particularly vulnerable to security attack. It is difficult to establish a centralized key distribution center and a trusted certification authority to provide cryptographic keys and digital certificates to nodes. To prevent attacks in ad hoc routing protocols, many algorithms have been used. In this paper, we have depicted a secure framework for multipath routing in wireless multihop network, which is comprehensive solution for secure data forwarding in wireless multihop networks. With the simulation results, the proposed scheme is compared with existing source routing scheme.

  • PDF

A Cluster-Header Selecting Method for more Secure and Energy-Efficient in Wireless Sensor Network (무선 센서 네트워크에서 안전하고 에너지 효율적인 클러스터 헤더 선출 기법)

  • Kim, Jin-Mook;Lee, Pung-Ho;Ryou, Hwang-Bin
    • Convergence Security Journal
    • /
    • v.7 no.2
    • /
    • pp.107-118
    • /
    • 2007
  • Distributed wireless sensor network in various environment have characteristic that is surveillance of environment-element and offering usefully military information but there is shortcoming that have some secure risks. Therefore secure service must be required for this sensor network safety. More safe and effective techniques of node administration are required for safe communication between each node. This paper proposes effective cluster-header and clustering techniques in suitable administration techniques of group-key on sensor network. In this paper, first each node transmit residual electric power and authentication message to BS (Base-Station). BS reflects "Validity Authentication Rate" and residual electric power. And it selects node that is more than these regularity values by cluster header. After BS broadcasts information about cluster header in safety and it transmits making a list of information about cluster member node to cluster header. Also, Every rounds it reflects and accumulates "Validity Authentication Rate" of former round. Finally, BS can select more secure cluster header.

  • PDF

Enhanced Secure Sensor Association and Key Management in Wireless Body Area Networks

  • Shen, Jian;Tan, Haowen;Moh, Sangman;Chung, Ilyong;Liu, Qi;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.453-462
    • /
    • 2015
  • Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using shortrange wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.

Q-Learning Based Method to Secure Mobile Agents and Choose the Safest Path in a IoT Environment

  • Badr Eddine Sabir;Mohamed Youssfi;Omar Bouattane;Hakim Allali
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.71-80
    • /
    • 2024
  • The Internet of Things (IoT) is an emerging element that is becoming increasingly indispensable to the Internet and shaping our current understanding of the future of the Internet. IoT continues to extend deeper into the daily lives of people, offering distributed and critical services. In contrast with current Internet, IoT depends on a dynamic architecture where physical objects with embedded sensors will communicate via cloud to send and analyze data [1-3]. Its security troubles will surely impinge all aspects of civilization. Mobile agents are widely used in the context of the IoT and due to the possibility of transmitting their execution status from one device to another in an IoT network, they offer many advantages such as reducing network load, encapsulating protocols, exceeding network latency, etc. Also, cryptographic technologies, like PKI and Blockchain technology, and Artificial Intelligence are growing rapidly allowing the addition of an approved security layer in many areas. Security issues related to mobile agent migration can be resolved with the use of these technologies, thus allowing increased reliability and credibility and ensure information collecting, sharing, and processing in IoT environments, while ensuring maximum autonomy by relying on the AI to allow the agent to choose the most secure and optimal path between the nodes of an IoT environment. This paper aims to present a new model to secure mobile agents in the context of the Internet of Things based on Public Key Infrastructure (PKI), Ethereum Blockchain Technology and Q-learning. The proposed model provides a secure migration of mobile agents to ensure security and protect the IoT application against malevolent nodes that could infiltrate these IoT systems.

A Proposal of Secure Route Discovery Protocol for Ad Hoc Network using Symmetric Key Cryptography (대칭키 암호화를 이용한 Ad Hoc 네트워크에서의 안전한 경로발견 프로토콜 제안)

  • Park, Young-Ho;Lee, Sang-Gon;Moon, Sang-Jae
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.68-75
    • /
    • 2008
  • Because ad hoc network is vulnerable to attacks such as routing disruption and resource consumption, it is in need of routing protocol security. In this paper, we propose an efficient and secure route discovery protocol for ad hoc network using symmetric key cryptography. This protocol has small computation loads at each hop using symmetric key cryptography. In the Route Reply, encryption/decrytion are used to guard against active attackers disguising a hop on the network.

  • PDF