• Title/Summary/Keyword: Secondary creep

Search Result 71, Processing Time 0.037 seconds

Analysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

  • Chen, Zhenmu;Kim, Joo-Cheong;Im, Myeong-Hwan;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1244-1250
    • /
    • 2014
  • The temperature of the main engine cabin of commercial vessel is very high. The material SS-316L undergoes creep damage at temperatures exceeding $450^{\circ}C$. It is essential to maintain the highly stressed engine cabin below the creep regime. Hence, seawater is employed in this kind of maritime vehicles as cooling liquid. It obtains the thermal energy at the cooling pipe line after passing through main engine cooling system. To harness the energy in the seawater, a turbine can be installed to absorb the energy in the seawater before being released into the sea. In this study, a cooling pipe line is selected to apply the tubular type hydro turbine for transferring the energy. Numerical analysis for investigating the performance and the internal flow characteristics of the tubular turbine is conducted. The results show that the maximum efficiency of 85.8% is achieved although the efficiency drops rapidly at partial flow rate condition. The efficiency descends slowly at the condition of excess flow rate. There is a relatively wide operating range of flow rate of this turbine to keep high efficiency at the excess flow rate condition. For the internal flow of the turbine, there is uniform streamline on the suction and pressure sides of the blade at the design point. However, the secondary flow appears at the suction and pressure sidesat the excess flow rate.In addition, it appears only at pressure side at the partial flow rate condition.

A Case Study on Soft Soil Treatment Design and Construction in Vietnam (베트남지역에서의 연약지반 개량 설계.시공 사례)

  • Yoon, Dong-Duk;Cho, Sung-Han;Seo, Won-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.336-345
    • /
    • 2010
  • GS E&C was awarded the contract for the construction of Hanoi - Hai Phong Expressway Package EX-7 from Station Km 72+000 to Station Km 81+300 in December 2008. This project is the $7^{th}$ contract package of the 105.5 km long expressway near Hai Phong city, which includes a FCM-styled bridge along with high embankments over soft ground. For these high embankments, there is a need to treat the soft soil for improving the overall stability during construction and for reducing the post-construction settlement of the expressway. The Designer of this project had adopted four (4) different types of ground improvement techniques to treat the soft ground, including the prefabricated vertical drains (PVD), sand drains (SD), pack drains (PD, or sometimes called packed sand drains), and sand compaction piles (SCP). The main focus of soft soil treatment should be paid attention to the residual settlement after construction. In current design, however, it appeared that the secondary compression (or creep) of the improved soil layer and the consolidation settlement of the lower untreated compressible soil layer have been neglected in the estimation of the post-construction settlement. These uncalculated residual settlements may not only unsatisfy the design criteria but also raise serious problems during service period of this expressway. In this paper, the subsoil condition and current design were reviewed focusing on the employed soft soil treatment method and expected residual settlement.

  • PDF

Settlement of Embankment and Foundation for Concrete Track of Gyungbu High Speed Railroad (경부고속철도 콘크리트궤도 토공 및 원지반 침하 (I))

  • Yang, Shin-Chu;Moon, Jae-Suk;Lee, Hyun-Jung;Kang, Dae-Woong;Kim, Dae-Sang
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.644-651
    • /
    • 2006
  • An application of concrete track is being actively processed for the construction of Korean railroad. The concrete track has an advantage to decrease the maintenance ire, but is very difficult system to maintain after earthwork settlement occurred. Therefore, the management and control of embankment and foundation settlement is very important for the successful concrete track construction. We expect that the main part of the settlement of the concrete track is the one of embankment and foundation supporting it. Settlements vulnerable to the concrete track among the causes of lots of settlements are primary consolidation and secondary compression settlement of foundation, creep settlement of embankment, settlement caused by train load, and unequal settlement resulting from the difference of embankment material and construction process. This paper investigated the settlement causes to make badly effects on the concrete track and also evaluated the settlement with field tests and numerical analysis.

Evolution of Mechanical Properties through Various Heat Treatments of a Cast Co-based Superalloy (주조용 코발트기 초내열합금의 열처리에 따른 기계적 특성 변화)

  • Kim, In-Soo;Choi, Baig-Gyu;Jung, Joong-Eun;Do, Jeong-Hyeon;Jung, In-Yong;Jo, Chang-Yong
    • Journal of Korea Foundry Society
    • /
    • v.38 no.5
    • /
    • pp.103-110
    • /
    • 2018
  • The effects of a heat treatment on the carbide formation behavior and mechanical properties of the cobalt-based superalloy X-45 were investigated here. Coarse primary carbides formed in the interdendritic region in the as-cast specimen, along with the precipitation of fine secondary carbides in the vicinity of the primary carbides. Most of the carbides formed in the interdendritic region were dissolved into the matrix by a solution treatment at $1274^{\circ}C$. Solutionizing at $1150^{\circ}C$ led to the dissolution of some carbides at the grain boundaries, though this also caused the precipitation of fine carbides in the vicinity of coarse primary carbides. A solution treatment followed by an aging treatment at $927^{\circ}C$ led to the precipitation of fine secondary carbides in the interdendritic region. Very fine carbides were precipitated in the dendritic region by an aging heat treatment at $927^{\circ}C$ and $982^{\circ}C$ without a solution treatment. The hardness value of the alloy solutionized at $1150^{\circ}C$ was somewhat higher than that in the as-cast condition; however, various aging treatments did not strongly influence the hardness value. The specimens as-cast and aged at $927^{\circ}C$ showed the highest hardness values, though they were not significantly affected by the aging time. The specimens aged only at $982^{\circ}C$ showed outstanding tensile and creep properties. Thermal exposure at high temperatures for 8000 hours led to the precipitation of carbide at the center of the dendrite region and an improvement of the creep rupture lifetimes.

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.

Foot Syndactyly: A Clinical and Demographic Analysis

  • Kim, Jong Ho;Kim, Byung Jun;Kwon, Sung Tack
    • Archives of Plastic Surgery
    • /
    • v.43 no.6
    • /
    • pp.559-563
    • /
    • 2016
  • Background Syndactyly of the foot is the second most common congenital foot anomaly. In East Asia, however, no large case study has been reported regarding the clinical features of isolated foot syndactyly. In this study, we report a review of 118 patients during the last 25 years. Methods We conducted a chart review of patients who underwent surgical correction for foot syndactyly between January 1990 and December 2014. Operations were performed with a dorsal triangular flap and a full-thickness skin graft. The demographics of included patients and their clinical features were evaluated. Surgical outcomes and complications were analyzed. Results Among 118 patients with 194 webs (155 feet), 111 patients showed nonsyndromic cases and 7 patients showed syndromic cases. In 80 unilateral cases (72.1%), the second web was the most frequently involved (37.5%), followed by the fourth (30%), the first (15%), the third (15%), the first and second in combination (1.3%), and the second and third in combination (1.3%). Among 31 bilateral cases, 2 cases were asymmetric. Among the remaining 29 symmetric bilateral cases, the second web was the most frequently involved (45.2%), followed by the first (22.6%), and the fourth (6.5%). No specific postoperative complications were observed, except in the case of 1 patient (0.51%) who required a secondary operation to correct web creep. Conclusions This retrospective clinical study of 118 patients with both unilateral and bilateral foot syndactyly revealed that the second web was the most frequently involved. In addition, complete division and tension-free wound closure with a full-thickness skin graft of sufficient size showed good postoperative results.

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials (취성재료의 장기 강도시험 중 미소파괴음 신호 분석)

  • Cheon, Dae-Sung;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.121-131
    • /
    • 2017
  • We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

Effects of Various Loading Periods on the Consolidation Characteristics of Remolded Clay - With Special Reference to Gwangyang Marine Clayey Soil - (하중재하기간이 재성형 점토의 압밀특성에 미치는 영향 - 광양항 해성점토를 중심으로 -)

  • Hong, Jae-Cheol;Kim, Jin-Young;Shim, Jae-Rok;Kang, Kwon-Soo;Kim, Ju-Hyun;Baek, Won-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.53-64
    • /
    • 2014
  • This study sets it's face to define effects of the various loading periods in normal consolidation area on clay's compression and long-term consolidation characteristics through a laboratory test using homogeneous remolded clay. Moreover, by carrying out a long-term consolidation test which diversifies initial consolidation applicable to effective overburden loading in the various loading period. This study intended to suggest the method predicting the final settlement on the basis of loading periods by comparing and analyzing compression curve's characteristics according to loading weight of each stage and increase in loading period when carrying out the standard consolidation test. From the test results, the study shows that as of the soft clay's compression characteristics on the basis of various loading periods, preconsolidation load has a tendency to be decreased slightly as the loading period is getting more and more longer at each step after initial consolidation load puts on the remolded clay which is caused by secondary consolidation's increase in the latter part of each phase. And those effects have an weaker influence on compression index in normal consolidation area at the same time as secondary consolidation brought out quasi-overconsolidation and stabilization of clay's structure, have an influence re-compression index is increased in overconsolidation area on the other hand.

Characteristics of Li-ion battery using polymeric gel electrolytes reinforced with glass fiber cloth (유리섬유 cloth가 보강된 겔상의 고분자 필름을 전해질로 이용한 리튬이온 전지의 특성)

  • Park Ho Cheol;Kim Sang Hern;Chun Jong Han;Ko Jang Myoun;Jo Soo Ik;Sohn Hun-Joon
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.100-103
    • /
    • 2000
  • Polymeric gel electrolytes based on polyacrylronitile blended with poly(vinylidene fluoride-co-hexafluoro-propylene)(P(VdF-co-HFP), which were reinforced with glass fiber cloth(GFC) to increase the mechanical strength, were prepared for the practical use in secondary battery. Test cell consisting of $LiCoO_2$ as a cathode and mesophase pich-based ca.bon fiber (MCF) as an anode material showed a capacity of 110 mAh/g based on the cathode weight at 0.2C rate at room temperature. Over $80\%$ of initial capacity was retained after 400cycles, indicating that GFC is suitable for a reinforcing material to increase the mechanical strength of gel based electrolytes.

Suggestion of Modified Compression Index for secondary consolidation using by Nonlinear Elasto Viscoplastic Models (비선형 점탄소성 모델을 이용한 2차압밀이 포함된 수정압축지수개발)

  • Choi, Bu-Sung;Im, Jong-Chul;Kwon, Jung-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1115-1123
    • /
    • 2008
  • When constructing projects such as road embankments, bridge approaches, dikes or buildings on soft, compressible soils, significant settlements may occur due to the consolidation of these soils under the superimposed loads. The compressibility of the soil skeleton of a soft clay is influenced by such factors as structure and fabric, stress path, temperature and loading rate. Although it is possible to determine appropriate relations and the corresponding material parameters in the laboratory, it is well known that sample disturbance due to stress release, temperature change and moisture content change can have a profound effect on the compressibility of a clay. The early research of Tezaghi and Casagrande has had a lasting influence on our interpretation of consolidation data. The 24 hour, incremental load, oedometer test has become, more or less, the standard procedure for determining the one-dimensional, stress-strain behavior of clays. An important notion relates to the interpretation of the data is the ore-consolidation pressure ${\sigma}_p$, which is located approximately at the break in the slope on the curve. From a practical point of view, this pressure is usually viewed as corresponding to the maximum past effective stress supported by the soil. Researchers have shown, however, that the value of ${\sigma}_p$ depends on the test procedure. furthermore, owing to sampling disturbance, the results of the laboratory consolidation test must be corrected to better capture the in-situ compressibility characteristics. The corrections apply, strictly speaking, to soils where the relation between strain and effective stress is time independent. An important assumption in Terzaghi's one-dimensional theory of consolidation is that the soil skeleton behaves elastically. On the other hand, Buisman recognized that creep deformations in settlement analysis can be important. this has led to extensions to Terzaghi's theory by various investigators, including the applicant and coworkers. The main object of this study is to suggestion the modified compression index value to predict settlements by back calculating the $C_c$ from different numerical models, which are giving best prediction settlements for multi layers including very thick soft clay.

  • PDF