DOI QR코드

DOI QR Code

Analysis of Acoustic Emission Signals during Long-Term Strength Tests of Brittle Materials

취성재료의 장기 강도시험 중 미소파괴음 신호 분석

  • 천대성 (한국지질자원연구원 전략기술연구 본부 방사성폐기물지층처분연구단) ;
  • 정용복
  • Received : 2017.05.16
  • Accepted : 2017.06.07
  • Published : 2017.06.30

Abstract

We studied the time-dependent behaviors of rock and concrete materials by conducting the static and dynamic long-term strength tests. In particular, acoustic emission(AE) signals generated while the tests were analyzed and used for the long-term stability evaluation. In the static subcritical crack growth test, the long-term behavior and AE characteristics of Mode I and Mode II were investigated. In the dynamic long-term strength test, the fatigue limit and characteristics of generation of AE were analyzed through cyclic four points bending test. The graph of the cumulative AE hits versus time showed a shape similar to that of the creep curve with the first, second and third stages. The possibility for evaluating the static and dynamic long-term stability of rock and concrete is presented from the log - log relationship between the slope of the secondary stage of cumulative AE hits curve and the delayed failure time.

본 연구에서는 암석과 콘크리트의 정적 및 동적 장기강도시험을 통해 이들 재료의 시간 의존적 거동에 대해 연구했으며, 특히 장기강도시험 중 발생한 미소파괴음 신호를 분석하여 장기 안정성 평가에 활용하고자 하였다. 정적 장기강도시험의 경우 임계하 균열성장시험을 활용하여 Mode I과 Mode II에 대한 장기거동과 미소파괴음 발생특성을 분석하였으며, 동적 장기강도시험의 경우, 반복재하 4점 굴곡시험을 통한 장기강도의 한계와 미소파괴음 발생특성을 분석하였다. 미소파괴음 분석결과, 미소파괴음 히트 누적곡선 대 시간에 따른 곡선은 1차, 2차, 3차 구간이 있는 크립곡선의 모양과 유사한 모양을 보였다. 선형구간에 해당하는 미소파괴음 히트 누적곡선의 2차 구간의 기울기와 지연파괴시간과의 로그-로그 관계로부터 암석과 콘크리트의 정적 및 동적 장기 안정성을 평가하는 방안에 대한 가능성을 제시하였다.

Keywords

References

  1. Amadei B. & Curran J.H., 1980, Creep behaviour of rock joints, 13th Canadian Rock Mechanics Symposium, Toronto, 146-150.
  2. Atkinson, B. K., 1984, Subcritical crack growth in geological materials, J. Geophysics Res. 89(B6), 4077-4114. https://doi.org/10.1029/JB089iB06p04077
  3. Backers, T., 2006, Experimental Determination of Subcritical Crack Growth Parameters, Report R101-1B06, GeoFrames, 82.
  4. Bagde, M., & Petros, V., 2009, Fatigue and dynamic energy behaviour of rock subjected to cyclical loading. International Journal of Rock Mechanics and Mining Sciences, 46, 200-209. https://doi.org/10.1016/j.ijrmms.2008.05.002
  5. Berkovits, A.,Fang, D., 1995, Study of Fatigue Crack Characteristics by Acoustic Emission, Eng. Fracture Mech., 51 (3), 401-416. https://doi.org/10.1016/0013-7944(94)00274-L
  6. Cheon, D.S., Park, C., Jung, Y.B., Park C.W., Song, W.K., 2012, Mechanical properties of a lining system under cyclic loading conditions in underground lined rock cavern for compressed air energy storage, Tunnel and Underground Space, 22(2), 77-85. https://doi.org/10.7474/TUS.2012.22.2.077
  7. Cheon, D.S., Jung, Y.B., Park, E.S., 2014, Development of acoustic emission monitoring system for the safety of geotechnical structures, J. Korean Tunn. Undergr. Sp. Assoc., 16(5), 471-485. https://doi.org/10.9711/KTAJ.2014.16.5.471
  8. Fuenkajorn, K., & Phueakphum, D., 2010, Effects of cyclic loading on mechanical properties of Maha Sarakham salt. Engineering Geology, 112, 43-52. https://doi.org/10.1016/j.enggeo.2010.01.002
  9. Hong, J.S., Jeon, S., 2004, Characteristics of Creep Deformation Behavior of Granite under Uniaxial Compression, Tunnel and Underground Space, 14(1), 69-77.
  10. Ishida., T., Labuz, J.F., Manthei, G., Meredith, P.G., Nasseri, M.H.B., Shin, K., Yokyama, T., Zang, A., 2017, ISRM Suggested Method for Laboratory Acoustic Emission Monitoring, Rock Mech. Rock Eng., 50, 665-674. https://doi.org/10.1007/s00603-016-1165-z
  11. Jiang, X., Shu-chun, L., Yung-qi, T., Xiao-jun, T., Xin, W., 2009, Acoustic emission characteristic during rock fatigue damage and failure. Procedia Earth and Plenetary Science, 556-559.
  12. Jung, Y.B., Cheon, D.S., Park, E.S., Park, C., Lee, Y.S., Park, C., Choi, B.H., 2014, Estimation of the Characteristics of Delayed Failure and Long-term Strength of Granite by Brazilian Disk Test, Tunnel and Underground Space, 24(1), 67-80. https://doi.org/10.7474/TUS.2014.24.1.067
  13. Jung, Y.B., Park, E.S., Kim, H., 2016, Development and application of Mode II fracture toughness test method using rock core specimen, Tunnel and Underground Space, 26(5), 396-4080. https://doi.org/10.7474/TUS.2016.26.5.396
  14. KIGAM, 2015, Development of technology for CO2 geological storage and securing green energy resources in deep geo-environment (Part III), GP2015-010-2015(1), MKE, 265.
  15. Kim, Y.S., Jung, S.K., Cha, J.S., Bang, I.H., 2003, The creep behavior of shale in Daegu area, Tunnel and Underground Space, 13(2), 100-107.
  16. Kim, C., Kemeny, J., 2008, A three-dimensional progressive failure model for joints considering fracture mechanics and subcritical crack growth in rock, Tunnel and Underground Space, 19(1), 86-94.
  17. Kim, J.D, Lee, J.I, Kim, Z.K., 1983, A Rheological study on creep behavior of sandstone in Samcheok coal mine, J. Korean Institute of mineral and mining engineering, 20, 153-160.
  18. Ko, T. Y., 2008, Subcritical crack growth under mode I, II and III loading for conconino sandstone, Ph.D dissertation, The University of Arizona, 301.
  19. Lee, H.S., Park, Y.J. You, K.H., Lee, H.K., 1999, A experimental study for the mechanical behavior of rock joints under cyclic shear loading, Tunnel and Underground Space, 9(4), 45-58.
  20. Li, Y. and C. Xia, 2000, Time-dependent tests on intact rocks in uniaxial compression, Int. J. Rock Mech. Min. Sci. 37, 467-475. https://doi.org/10.1016/S1365-1609(99)00073-8
  21. Liu, X. S., Ning, J. G., Tan, Y. L., & Gu, Q., 2016, Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. International Journal of Rock Mechanics and Mining Sciences, 85, 27-32. https://doi.org/10.1016/j.ijrmms.2016.03.003
  22. Martin, C.D., Read, R.S., Martino, J.B., 1997, Observation of brittle failure around a circular test tunnel, Int. J. Rock Mech. & Rock Eng., 34, 1065-1073. https://doi.org/10.1016/S1365-1609(97)90200-8
  23. Momeni, A., Karakus, M., Khanlari, G.R., Heidar, M., 2015, Effects of cyclic loading on the mechanical properties of a granite, Int. J. Rock Mech. & Rock Eng., 36(4), 543-549.
  24. Nara, Y., Takada, M., Mori, D., Owada, H., Yoneda, T., Kaneko, K., 2010, Subcritical crack growth and long-term strength in rock and cementitious material, Int. J. Fracture, 164, 57-71. https://doi.org/10.1007/s10704-010-9455-z
  25. Park, B.K., Jeon, S., 2006, Dynamic frictional behavior of saw-cut rock joints through shaking table test, Tunnel and Underground Space, 16(1), 67-80.
  26. Sun, B., Zhu, Z., Shi, C., Luo, Z., 2017, Dynamic mechanical behavior and fatigue damage evolution of sandstone under cyclic loading, Int. J. Rock Mech. Min. Sci., 94, 82-89.
  27. Swanson, P.L., 1984, Subcritical crack growth and other time and environmental behaviour in crustal rock, J. Geophys. Res., 89, pp.4137-4152. https://doi.org/10.1029/JB089iB06p04137
  28. Wilkins, B. J. S., 1980, Slow crack growth and delayed failure of granite, Int. J. Rock Mech. Min. Sci. & Geomech,, 17, 365-369. https://doi.org/10.1016/0148-9062(80)90520-3
  29. Wilkins, B. J. S., 1987, The long-term strength of plutonic rock, Int. J. Rock Mech. Min. Sci. & Geomech,, 24(6), 379-380. https://doi.org/10.1016/0148-9062(87)92261-3
  30. Xiao, J.Q., Ding, D.X., Jiang, F.L., Xu, G., 2010, Fatigue damage variable and evolution of rock subjected to cyclic loading, Int. J. Rock Mech. Min. Sci., 47, 461-468. https://doi.org/10.1016/j.ijrmms.2009.11.003
  31. Yoon, Y.K., Kim, B.C., Jo, Y.D., 2010, Creep Characteristics of Granite in Gagok Mine, Tunnel and Underground Space, 20(5), 390-398.
  32. Zhenyu, T., & Haihong, M., 1990, Technical note: An experimental study and analysis of the behaviour of rock under cyclic loading. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 27(1), 51-56.