• 제목/요약/키워드: Secondary aerosol formation

검색결과 42건 처리시간 0.022초

스모그 챔버 실험에 의한 에어로졸의 생성과 성장 현상의 관찰 (Characteristics of Formation and Growth of Aerosol Particles in an Indoor Smog Chamber)

  • 김민철;배귀남;이승복;진현철;문길주;박주연;김용표
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2003년도 춘계학술대회 논문집
    • /
    • pp.43-44
    • /
    • 2003
  • 스모그 챔버는 대기화학 반응을 물리적 변수를 제어할 수 있는 공간 내에서 재현하여 스모그 현상을 체계적으로 규명하기 위해 가장 많이 사용되는 방법이다(Dodge, 2000). 대기화학 반응을 통해 생성된 입자상 물질(secondary particles) 또는 초미세 입자(ultrafine particle, 〈0.1 $\mu\textrm{m}$)는 연속된 물리화학 반응을 통해 accumulation mode(0.1~l.0 $\mu\textrm{m}$) 입자로 성장한다. 특히, 대도시의 시정(visibility)은 accumulation mode 입자의 산란(scattering)과 흡수(adsorption)가 주요한 원인이기 때문에 이러한 물질의 생성에 영향을 주는 가스상 물질의 전화(gas-to-particle conversion) 반응과 초미세 입자의 성장 현상을 규명하는 것은 매우 중요하다. (중략)

  • PDF

NaOH를 이용한 배기가스의 습식 스크러빙에서 SO2 농도에 따른 NOx 제거효율 (Effect of SO2 Concentration on NOx Removal Efficiency in NaOH-Based Wet Scrubbing)

  • 강명수;황정호
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.659-667
    • /
    • 2018
  • $NO_x$ and $SO_2$ are mainly generated in the combustion of fossil fuels, and they cause secondary aerosol formation and acid rain in the atmosphere. Many studies have been conducted on the wet scrubbing process which can simultaneously reduce $NO_x$ and $SO_2$ at relatively low temperature. In this study, we conducted an experimental study on wet scrubbing by using NaOH solution. Especially, this study focuses on $NO_x$ and $SO_2$ removal characteristics by varying $NO_2/NO_x$ ratio and $SO_2$ concentration.

제주시 도심지역에서 여름과 겨울의 PM2.5 이온조성 특성 (Ionic Compositions of PM2.5 during Summer and Winter in the Downtown Area of Jeju City in Jeju Island)

  • 이기호;허철구
    • 한국환경과학회지
    • /
    • 제26권4호
    • /
    • pp.447-456
    • /
    • 2017
  • Chemical properties of aerosols were investigated by analyzing the inorganic water-soluble content in $PM_{2.5}$ collected in the downtown area of Jeju City in Jeju Island. Due to an increase in both the number of visiting tourists and the size of local population, the number of cars in this area is increasing, causing an increase in $PM_{2.5}$. Eight $PM_{2.5}$-bound major inorganic ions were analyzed during the summer and winter periods. The water-soluble inorganic component represents a significant fraction of $PM_{2.5}$. In particular, secondary inorganic aerosols contribute 36.2% and 47.5% of $PM_{2.5}$ mass in summer and winter, respectively. Nitrate concentrations increase for $[NH_4{^+}]/[SO_4{^{2-}}]$>1.5, and excess ammonium, which is necessary for ammonium nitrate formation, is linearly correlated with nitrate. These results are clearly observed during the winter because conditions are more conducive to the formation of ammonium nitrate. A significant negative correlation between Nitrogen Oxidation Ratio (NOR) and temperature was observed. The obtained results can be useful for a better understanding of the aerosol dynamics in the downtown area in Jeju City.

광주지역 PM2.5의 고농도 오염현상 조사 (Investigation of PM2.5 Pollution Episodes in Gwangju)

  • 유근혜;조성용;배민석;이권호;박승식
    • 한국대기환경학회지
    • /
    • 제31권3호
    • /
    • pp.269-286
    • /
    • 2015
  • 24-hr integrated $PM_{2.5}$ measurements were performed between December 2013 and October 2014 at an urban site in Gwangju and the collected samples were analyzed for organic carbon (OC), elemental carbon (EC), ionic species, and elemental species. Objectives of this study were to identify $PM_{2.5}$ pollution episodes, to characterize their chemical components, and to examine their probable origins. Over the course of the study period, average $PM_{2.5}$ concentration was $37.7{\pm}23.6$ $(6.0{\sim}121.5){\mu}g/m^3$. Concentrations of secondary ionic species; $NH_4{^+}$, $NO_3{^-}$, and $SO_4{^{2-}}$ was on average $5.54{\mu}g/m^3$ (0.28~ 20.86), $7.60{\mu}g/m^3$ (0.45~ 33.53), and $9.05{\mu}g/m^3$ (0.50~ 34.98), accounting for 13.7% (4.6~ 22.7), 18.6% (2.9~ 44.8), and 22.9% (4.9~ 55.1) of the $PM_{2.5}$ concentration, respectively. Average OC and EC concentrations were $5.22{\mu}g/m^3$ and $1.54{\mu}g/m^3$, taking possession of 4.6 and 22.2% (as organic mass) of the $PM_{2.5}$, respectively. Frequencies at which 24-hr averaged $PM_{2.5}$ exceeded a 24-hr averaged Korean $PM_{2.5}$ standard of $50{\mu}g/m^3$ (termed as an "episode" in this study) were 30, accounting for 21.3% of total 141 measurements. These pollution episodes were mostly associated with haze phenomenon and weak surface wind speed. It is suggested that secondary formation of aerosol was one important formation mechanism of the episodes. The episodes were associated with enhancements of organic mass, $NO_3{^-}$ and $SO_4{^{2-}}$ in winter, of $NO_3{^-}$ and $SO_4{^{2-}}$ in spring, and of $SO_4{^{2-}}$ in summer. Potential source contribution function results indicate also that $PM_{2.5}$ episodes were likely attributed to local and regional haze pollution transported from northeastern China in winter, to atmospheric processing of local emissions rather than long-range transport of air pollutants in spring, and to the $SO_4{^{2-}}$ driven by photochemistry of $SO_2$ in summer.

XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사 (Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin)

  • 정재욱;김자현;박승식;문광주;이석조
    • 한국대기환경학회지
    • /
    • 제27권3호
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

강원도 춘천에서 측정한 PM2.5의 탄소 및 이온성분 농도 특성 및 고농도 사례 분석 (Characteristics of Ionic and Carbonaceous Compounds in PM2.5 and High Concentration Events in Chuncheon, Korea)

  • 조성환;김평래;한영지;김현웅;이승묵
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.435-447
    • /
    • 2016
  • Anthropogenic emissions of $PM_{2.5}$ in Chuncheon are considered to be low according to the national emissions inventory; however, the atmospheric $PM_{2.5}$ concentrations have been reported to be higher than or at least similar to those measured in metropolitan (e.g. Seoul) and/or in industrial cities (e.g. Incheon, Ulsan). In this study, the concentrations of $PM_{2.5}$ and its ionic and carbonaceous compounds were measured from Jan. 2013 to Dec. 2014 in Chuncheon, Korea to identify the characteristics of high $PM_{2.5}$ concentration event. Average $PM_{2.5}$ concentration was $34.6{\mu}g/m^3$, exceeding the annual air quality standard ($25{\mu}g/m^3$). The most abundant compound was organic carbon (OC), comprising 26% of $PM_{2.5}$ mass, followed by $SO_4{^{2-}}$. Among 14 high concentration events, three events showed clearly enhanced contributions of OC, $SO_4{^{2-}}$, $NO_3{^-}$ and $NH_4{^+}$ to $PM_{2.5}$ under the fog events. One event observed in summer showed high concentration of $SO_4{^{2-}}$ while the high wind speeds and the low $PM_{2.5}/PM_{10}$ ratios were observed for the two high concentration events. These results indicate that the secondary aerosol formation under the fog events and high atmospheric temperature as well as the regional and/or the long-range transport were important on enhancing $PM_{2.5}$ concentration in Chuncheon. Cluster analysis based on back trajectories also suggested the significant impacts of regional transport from China and metropolitan areas of Korea on $PM_{2.5}$ in Chuncheon.

서울 대기 중 PM2.5 내 OC와 EC로부터 SOC 추정방법의 비교 평가 (Validation for SOC Estimation from OC and EC concentration in PM2.5 measured at Seoul)

  • 유하영;김기애;김용표;정창훈;신혜정;문광주;박승명;이지이
    • 한국입자에어로졸학회지
    • /
    • 제16권1호
    • /
    • pp.19-30
    • /
    • 2020
  • The organic carbon in the ambient particulate matter (PM) is divided into primary organic carbon (POC) and secondary organic carbon (SOC) by their formation way. To regulate PM effectively, the estimation of the amount of POC and SOC separately is one of important consideration. Since SOC cannot be measured directly, previous studies have evaluated determination of SOC by the EC tracer method. The EC tracer method is a method of estimating the SOC value from calculating the POC by determining (OC/EC)pri which is the ratio of the measured values of OC and EC from the primary combustion source. In this study, three different ways were applied to OC and EC concentrations in PM2.5 measured at Seoul for determining (OC/EC)pri: 1) the minimum value of OC/EC ratio during the measurement period; 2) regression analysis of OC vs. EC to select the lower 5-20% OC/EC ratio; 3) determining the OC/EC ratio which has lowest correlation coefficient value (R2) between EC and SOC which is reported as minimum R squared method (MRS). Each (OC/EC)pri ratio of three ways are 0.35, 1.22, and 1.77, respectively from the 1 hourly data. We compared the (OC/EC)pri ratio from 1hourly data with 24 hourly data and revealed that (OC/EC)pri estimated from 24 hourly data had twice larger than 1hourly data due to the low time resolution of sampling. We finally confirmed that the most appropriate value of (OC/EC)pri is that calculated by a regression analysis of 1 hourly data and estimated SOC amounts at PM2.5 of the Seoul atmosphere.

춘천시 PM2.5의 질량농도 및 이온성분 농도의 특성에 관한 연구 (Study on Characteristics of PM2.5 and Its Ionic Constituents in Chuncheon, Korea)

  • 정진희;한영지
    • 한국대기환경학회지
    • /
    • 제24권6호
    • /
    • pp.682-692
    • /
    • 2008
  • Fine particles ($PM_{2.5}$) were collected and analyzed from November 2005 through August 2007 in Chuncheon, Korea to investigate the characteristics of $PM_{2.5}$ and its ionic constituents. The average $PM_{2.5}$ concentration during the study period was $39{\mu}g/m^3$, which is almost two times higher than the annual US NAAQS $PM_{2.5}$ standard of $15{\mu}g/m^3$. $PM_{2.5}$ concentrations were higher in spring and winter than in summer and fall. During spring, Asian Dust events dramatically enhanced $PM_{2.5}$ concentrations, and long-range transport of $PM_{2.5}$ emitted in industrial area of China often occurred during winter based on trajectory analysis. Contribution of $PM_{2.5}$ to $PM_{10}$ concentrations ranged from $72{\mu}g/m^3$ during Asian Dust events to $457{\mu}g/m^3$, indicating that a large portion of $PM_{2.5{\sim}10}$ was transported from China during Asian Dust events. Among the major ionic constituents ${SO_4}^{2-}$ showed the highest concentration, followed by ${NH_4}^+$, ${NO_3}^-$ and ${NO_2}^-$. Chuncheon appeared to be ${NH_4}^+$ rich environment, indicating that $(NH_4)_{2}SO_4$ and ${NH_4}{NO_3}$ were the predominant forms of ${NO_3}^-$ and ${SO_4}^2$ in $PM_{2.5}$. Haze has frequently occurred in Chuncheon since So-Yang dam was constructed in 1973. Haze events were observed on 23 days during sampling period, and the average $PM_{2.5}$ concentration was approximately 1.6 times higher during haze events than during non-haze events. This result suggests that haze enhances the secondary aerosol formation because the aerosol spontaneously absorbs water to form a saturated salt solution, deriving a significant increase in the mass of the particle.

준 실시간 화학적 조성자료를 이용한 미세입자 연무 에피소드 규명 (Investigation on a Haze Episode of Fine Particulate Matter using Semi-continuous Chemical Composition Data)

  • 박승식;김선정;공부주;이권호;조석연;김종춘;이석조
    • 한국대기환경학회지
    • /
    • 제29권5호
    • /
    • pp.642-655
    • /
    • 2013
  • In this study, semi-continuous measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), black carbon (BC), and ionic species concentrations were made for the period of April 03~13, 2012, at a South Area Supersite at Gwangju. Possible sources causing the high concentrations of major chemical species in $PM_{2.5}$ observed during a haze episode were investigated. The measurement results, along with meteorological parameters, gaseous pollutants data, air mass back trajectory analyses and PSCF (potential source contribution function) results, were used to study the haze episode. Substantial enhancements of OC, EC, BC, $K^+$, $SO{_4}^{2-}$, $NO{_3}{^-}$, $NH{_4}{^+}$, and CO concentrations were closely associated with air masses coming from regions of forest fires in southeastern China, suggesting likely an impact of the forest fires. Also the PSCF maps for EC, OC, $SO{_4}^{2-}$, and $K^+$ demonstrate further that the long-range transport of smoke plumes of forest fires detected over the southeastern China could be a possible source of haze phenomena observed at the site. Another possible source leading to haze formation was likely from photochemistry of precursor gases such as volatile organic compounds, $SO_2$, and $NO_2$, resulting in accumulation of secondary organic aerosol, $SO{_4}^{2-}$ and $NO{_3}{^-}$. Throughout the episode, local wind directions were between 200 and $230^{\circ}C$, where two industrial areas are situated, with moderate wind speeds of 3~5 m/s, resulting in highly elevated concentration of $SO_2$ with a maximum of 15 ppb. The $SO{_4}^{2-}$ peak occurring in the afternoon hours coincided with maximum ambient temperature ($24^{\circ}C$) and ozone concentration (~100 ppb), and were driven by photochemistry of $SO_2$. As a result, the pattern of $SO{_4}^{2-}$ variations in relation to wind direction, $SO_2$ and $O_3$ concentrations, and the strong correlation between $SO_2$ and $SO{_4}^{2-}$ ($R^2=0.76$) suggests that in addition to the impact of smoke plumes from forest fires in the southeastern China, local $SO_2$ emissions were likely an important source of $SO{_4}^{2-}$ leading to haze formation at the site.

대기 중 모노테르펜 (α-피넨, 3-카렌, R-리모넨, 1,8-시네올) 측정을 위한 혼합표준가스개발 (Development of Primary Standard Gas Mixtures for Monitoring Monoterpenes (α-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) Ambient Levels (at 2 nmol/mol))

  • 강지환;김미언;김용두;이영우;이상일
    • 한국대기환경학회지
    • /
    • 제32권3호
    • /
    • pp.320-328
    • /
    • 2016
  • Among biogenic volatile organic compounds (BVOCs) in the natural ecosystem, monoterpenes, along with isoprene, play important roles in atmospheric chemistry and make significant impacts on air pollution and climate change, especially due to their contribution to secondary organic aerosol production and photochemical ozone formation. It is essential to measure monoterpene concentrations accurately for understanding their oxidation processes, emission processes and estimation, and interactions between biosphere and atmosphere. Thus, traceable calibration standards are crucial for the accurate measurement of monoterpenes at ambient levels. However, there are limited information about developing calibrations standards for monoterpenes in pressured cylinders. This study describes about developing primary standard gas mixtures (PSMs) for monoterpenes at about 2 nmol/mol, near ambient levels. The micro-gravimetric method was applied to prepare monoterpene (${\alpha}$-pinene, 3-carene, R-(+)-limonene, 1,8-cineole) PSMs at $10{\mu}mol/mol$ and then the PSMs were further diluted to 2 nmol/mol level. To select an optimal cylinder for the development of monoterpene PSMs, three different kinds of cylinders were used for the preparation and were evaluated for uncertainty sources including long-term stability. Results showed that aluminum cylinders with a special internal surface treatment (Experis) had little adsorption loss on the cylinder internal surface and good long-term stability compared to two other cylinder types with no treatment and a special treatment (Aculife). Results from uncertainty estimation suggested that monoterpene PSMs can be prepared in pressured cylinders with a special treatment (Experis) at 2 nmol/mol level with an uncertainty of less than 4%.