DOI QR코드

DOI QR Code

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin

XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사

  • Jeong, Jae-Uk (Department of Environmental Engineering, Chonnam National University) ;
  • Kim, Ja-Hyun (Department of Environmental Engineering, Chonnam National University) ;
  • Park, Seung-Shik (Department of Environmental Engineering, Chonnam National University) ;
  • Moon, Kwang-Joo (Climate & Air Quality Research Department, National Institute of Environmental Research) ;
  • Lee, Seok-Jo (Climate & Air Quality Research Department, National Institute of Environmental Research)
  • 정재욱 (전남대학교 환경공학과) ;
  • 김자현 (전남대학교 환경공학과) ;
  • 박승식 (전남대학교 환경공학과) ;
  • 문광주 (국립환경과학원 기후대기연구부) ;
  • 이석조 (국립환경과학원 기후대기연구부)
  • Received : 2011.02.01
  • Accepted : 2011.05.11
  • Published : 2011.06.30

Abstract

24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

Keywords

References

  1. Bonn, B. and G.K. Moortgat (2003) Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons, Geophys. Res. Lett., 30(11), 1585, doi:10.1029/2003GL017000.
  2. Chang, H., P. Herckes, and J.L. Collett Jr. (2005) On the use of anion exchange chromatography for the characteri- zation of water soluble organic carbon, Geophys. Res. Lett., 32, L01810, doi:10.1029/2004GL021322.
  3. Decesari, S., M.C. Facchini, E. Matta, F. Lettini, M. Mircea, S. Fuzzi, E. Tagliavini, and J.-P. Putaud (2001) Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy, Atmos. Environ., 35, 3691-3699. https://doi.org/10.1016/S1352-2310(00)00509-4
  4. Decesari, S., M.C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A.R. Chughtai, and D.M. Smith (2002) Water soluble organic compounds formed by oxidation of soot, Atmos. Environ., 36, 1827-1832. https://doi.org/10.1016/S1352-2310(02)00141-3
  5. Decesari, S., M.C. Facchini, S. Fuzzi, and E. Tagliavini (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach, J. Geophys. Res., 105, 1481-1489. https://doi.org/10.1029/1999JD900950
  6. Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257- 259. Fuzzi, S., M.O. Andreae, B.J. Huebert, M. Kulmala, T.C. Bond, M. Boy, S.J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.-M. Kerminen, U. Lohmann, L.M. Russell, and U. Poschl (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change, Atmos. Chem. Phys., 6, 2017-2038. https://doi.org/10.5194/acp-6-2017-2006
  7. Fuzzi, S., M.O. Andreae, B.J. Huebert, M. Kulmala, T.C. Bond, M. Boy, S.J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.-M. Kerminen, U. Lohmann, L.M. Russell, and U. Poschl (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change, Atmos. Chem. Phys., 6, 2017-2038. https://doi.org/10.1126/science.1092185
  8. Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger (2004) Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659-1662. https://doi.org/10.1126/science.1092185
  9. Kiss, G., B. Varga, I. Galambos, and I. Ganszky (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107(D21), 8339, doi:10.1029/2001JD000603.
  10. Kiss, G., E. Tombacz, and H.C. Hansson (2005) Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol, J. Atmos. Chem., 50, 279-294. https://doi.org/10.1007/s10874-005-5079-5
  11. Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R.J. Weber, J.L. Jimenez, Q. Zhang, and D.R. Worsnop (2007) Oxygenated and water-soluble organic aerosols in Tokyo, J. Geophys. Res., 112, D01203, doi:10.1029/2006JD007056.
  12. Krivacsy, Z., A. Gelencser, G. Kiss, E. Meszaros, A. Molnar, A. Hoffer, T. Meszaros, Z. Sarvari, D. Temesi, B. Varga, U. Baltensperger, S. Nyeki, and E. Weingartner (2001) Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at Jungfraujoch, J. Atmos. Chem., 39, 235-259. https://doi.org/10.1023/A:1010637003083
  13. Limbeck, A., M. Kulmala, and H. Puxbaum (2003) Secondary organic aerosol formation in the atmosphere via heterogenous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30(10), doi:10.1029/2003GL017738.
  14. Miyazaki, Y., Y. Kondo, M. Shiraiwa, N. Takegawa, T. Miyakawa, S. Han, K. Kita, M. Hu, Z.Q. Deng, Y. Zhao, N. Sugimoto, D.R. Blake, and R.J. Weber (2009) Chemical characterization of water-soluble organic carbon aerosols at a rural site in Pearl River Delta, China, in the summer of 2006, J. Geophys. Res., 114, D14208, doi:10.1029/2009JD011736.
  15. Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, K. Kawamura, M. Mochida, K. Okuzawa, and R.J. Weber (2006) Time-resolved measurements of watersoluble organic carbon in Tokyo, J. Geophys. Res., 111, D23206, doi:10.1029/2006JD007125.
  16. Mukai, A. and Y. Ambe (1986) Characterization of humic acid-like brown substance in airborne particulate matter and tentative identification of its origin, Atmos. Environ., 20, 813-819. https://doi.org/10.1016/0004-6981(86)90265-9
  17. National Institute of Occupational Safty and Health (NIOSH) (1996) Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust), NIOSH Manual of Analytical Methods, 4th ed., Cincinnati, OH. https://doi.org/10.1021/es950943+
  18. Odum, J.R., T. Hoffmann, F. Bowman, D. Collins, R.C. Flagan, and J.H. Seinfeld (1996) Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585. https://doi.org/10.1021/es950943+
  19. Park, S.S. and S.Y. Cho (2011) Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45(1), 60-72. https://doi.org/10.1016/j.atmosenv.2010.09.045
  20. Park, S.S., J.Y. Hur, S.Y. Cho, S.J. Kim, and Y.J. Kim (2007) Characteristics of organic carbon species in atmospheric aerosol particles at a Gwangju area during summer and winter, J. Korean Soc. Atmos. Environ., 23(6), 675-688. (in Korean with English abstract) https://doi.org/10.5572/KOSAE.2007.23.6.675
  21. Park, S.S., M.S. Bae, J.J. Schauer, S.Y. Ryu, Y.J. Kim, S.Y. Cho, and S.J. Kim (2005) Evaluation of TMO and TOT methods for OC and EC measurements, and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia, Atmos. Environ., 39(28), 5101-5112. https://doi.org/10.1016/j.atmosenv.2005.05.016
  22. Polidori, A., B.J. Turpin, H.-J. Lim, J.C. Cabada, R. Subramanian, S.N. Pandis, and A.L. Robinson (2006) Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh, Aerosol Sci. Technol., 40, 861-872. https://doi.org/10.1080/02786820600754649
  23. Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science, 315, 1259-1262. https://doi.org/10.1126/science.1133061
  24. Ruellan, S. and H. Cachier (2001) Characterization of fresh particulate vehicular exhausts near a Paris high flow road, Atmos. Environ., 35, 453-468. https://doi.org/10.1016/S1352-2310(00)00110-2
  25. Saxena, P. and L.M. Hildemann (1996) Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109. https://doi.org/10.1007/BF00053823
  26. Saxena, P., L.M. Hildemann, P.H. McMurry, and J.H. Seinfeld (1995) Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res., 100, 18755-18770. https://doi.org/10.1029/95JD01835
  27. Schauer, J.J., B.T. Mader, J.T. Deminter, G. Heidemann, M.S. Bae, J.H. Seinfeld, R.C. Flagan, R.A. Cary, D. Smith, B.J. Huebert, T. Bertram, S. Howell, J.T. Kline, P. Quinn, T. Bates, B. Turpin, H.J. Lim, J.Z. Yu, H. Yang, and M.D. Keywood (2003) ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon, Environ. Sci. Technol., 37(5), 993-1001. https://doi.org/10.1021/es020622f
  28. Simoneit, B.R.T., M. Kobayashi, M. Mochida, K. Kawamura, and B.J. Huebert (2004) Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds, J. Geophys. Res., 109, D19S09, doi:10.1029/2004JD004565.
  29. Subramanian, R., A.Y. Khlystov, J.C. Cabada, and A.L. Robinson (2004) Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations, Aerosol Sci. Technol., 38, 27-48. https://doi.org/10.1080/02786820490247605
  30. Sullivan, A.P. and R.J. Weber (2006) Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin, J. Geophys. Res., 111, D05314, doi:10.1029/2005JD006485.
  31. Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34, 2983-3013. https://doi.org/10.1016/S1352-2310(99)00501-4
  32. Yu, J. (2002) Chemical characterization of water soluble organic compounds in particulate matters in Hong Kong. Final report for the Provision of Service to the Environmental Protection Department, HKSAR (Tender Ref. AS 01-018), Hong Kong.

Cited by

  1. Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an urban site in Korea in summer vol.14, pp.1, 2012, https://doi.org/10.1039/C1EM10617A
  2. Characteristics of PM2.5 Carbonaceous Aerosol using PILS-TOC and GC/MS-TD in Seoul vol.30, pp.5, 2014, https://doi.org/10.5572/KOSAE.2014.30.5.461
  3. Chemical Characteristics and Formation Pathways of Humic Like Substances (HULIS) in PM2.5 in an Urban Area vol.31, pp.3, 2015, https://doi.org/10.5572/KOSAE.2015.31.3.239