Browse > Article
http://dx.doi.org/10.5572/KOSAE.2011.27.3.337

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin  

Jeong, Jae-Uk (Department of Environmental Engineering, Chonnam National University)
Kim, Ja-Hyun (Department of Environmental Engineering, Chonnam National University)
Park, Seung-Shik (Department of Environmental Engineering, Chonnam National University)
Moon, Kwang-Joo (Climate & Air Quality Research Department, National Institute of Environmental Research)
Lee, Seok-Jo (Climate & Air Quality Research Department, National Institute of Environmental Research)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.27, no.3, 2011 , pp. 337-346 More about this Journal
Abstract
24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.
Keywords
WSOC; XAD7HP resin; Hydrophilic WSOC; Hydrophobic WSOC;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Schauer, J.J., B.T. Mader, J.T. Deminter, G. Heidemann, M.S. Bae, J.H. Seinfeld, R.C. Flagan, R.A. Cary, D. Smith, B.J. Huebert, T. Bertram, S. Howell, J.T. Kline, P. Quinn, T. Bates, B. Turpin, H.J. Lim, J.Z. Yu, H. Yang, and M.D. Keywood (2003) ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon, Environ. Sci. Technol., 37(5), 993-1001.   DOI   ScienceOn
2 Simoneit, B.R.T., M. Kobayashi, M. Mochida, K. Kawamura, and B.J. Huebert (2004) Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds, J. Geophys. Res., 109, D19S09, doi:10.1029/2004JD004565.   DOI
3 Subramanian, R., A.Y. Khlystov, J.C. Cabada, and A.L. Robinson (2004) Positive and negative artifacts in particulate organic carbon measurements with denuded and undenuded sampler configurations, Aerosol Sci. Technol., 38, 27-48.   DOI   ScienceOn
4 Sullivan, A.P. and R.J. Weber (2006) Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin, J. Geophys. Res., 111, D05314, doi:10.1029/2005JD006485.   DOI
5 Turpin, B.J., P. Saxena, and E. Andrews (2000) Measuring and simulating particulate organics in the atmosphere: problems and prospects, Atmos. Environ., 34, 2983-3013.   DOI   ScienceOn
6 Yu, J. (2002) Chemical characterization of water soluble organic compounds in particulate matters in Hong Kong. Final report for the Provision of Service to the Environmental Protection Department, HKSAR (Tender Ref. AS 01-018), Hong Kong.
7 Fuzzi, S., M.O. Andreae, B.J. Huebert, M. Kulmala, T.C. Bond, M. Boy, S.J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.-M. Kerminen, U. Lohmann, L.M. Russell, and U. Poschl (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change, Atmos. Chem. Phys., 6, 2017-2038.   DOI   ScienceOn
8 Park, S.S., J.Y. Hur, S.Y. Cho, S.J. Kim, and Y.J. Kim (2007) Characteristics of organic carbon species in atmospheric aerosol particles at a Gwangju area during summer and winter, J. Korean Soc. Atmos. Environ., 23(6), 675-688. (in Korean with English abstract)   과학기술학회마을   DOI   ScienceOn
9 Park, S.S., M.S. Bae, J.J. Schauer, S.Y. Ryu, Y.J. Kim, S.Y. Cho, and S.J. Kim (2005) Evaluation of TMO and TOT methods for OC and EC measurements, and their characteristics in PM2.5 at an urban site of Korea during ACE-Asia, Atmos. Environ., 39(28), 5101-5112.   DOI   ScienceOn
10 Polidori, A., B.J. Turpin, H.-J. Lim, J.C. Cabada, R. Subramanian, S.N. Pandis, and A.L. Robinson (2006) Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh, Aerosol Sci. Technol., 40, 861-872.   DOI   ScienceOn
11 Robinson, A.L., N.M. Donahue, M.K. Shrivastava, E.A. Weitkamp, A.M. Sage, A.P. Grieshop, T.E. Lane, J.R. Pierce, and S.N. Pandis (2007) Rethinking organic aerosols: semivolatile emissions and photochemical aging, Science, 315, 1259-1262.   DOI   ScienceOn
12 Krivacsy, Z., A. Gelencser, G. Kiss, E. Meszaros, A. Molnar, A. Hoffer, T. Meszaros, Z. Sarvari, D. Temesi, B. Varga, U. Baltensperger, S. Nyeki, and E. Weingartner (2001) Study on the chemical character of water soluble organic compounds in fine atmospheric aerosol at Jungfraujoch, J. Atmos. Chem., 39, 235-259.   DOI   ScienceOn
13 Ruellan, S. and H. Cachier (2001) Characterization of fresh particulate vehicular exhausts near a Paris high flow road, Atmos. Environ., 35, 453-468.   DOI   ScienceOn
14 Saxena, P. and L.M. Hildemann (1996) Water-soluble organics in atmospheric particles: A critical review of the literature and application of thermodynamics to identify candidate compounds, J. Atmos. Chem., 24, 57-109.   DOI
15 Saxena, P., L.M. Hildemann, P.H. McMurry, and J.H. Seinfeld (1995) Organics alter hygroscopic behavior of atmospheric particles, J. Geophys. Res., 100, 18755-18770.   DOI
16 Limbeck, A., M. Kulmala, and H. Puxbaum (2003) Secondary organic aerosol formation in the atmosphere via heterogenous reaction of gaseous isoprene on acidic particles, Geophys. Res. Lett., 30(10), doi:10.1029/2003GL017738.   DOI
17 Miyazaki, Y., Y. Kondo, M. Shiraiwa, N. Takegawa, T. Miyakawa, S. Han, K. Kita, M. Hu, Z.Q. Deng, Y. Zhao, N. Sugimoto, D.R. Blake, and R.J. Weber (2009) Chemical characterization of water-soluble organic carbon aerosols at a rural site in Pearl River Delta, China, in the summer of 2006, J. Geophys. Res., 114, D14208, doi:10.1029/2009JD011736.   DOI
18 Miyazaki, Y., Y. Kondo, N. Takegawa, Y. Komazaki, K. Kawamura, M. Mochida, K. Okuzawa, and R.J. Weber (2006) Time-resolved measurements of watersoluble organic carbon in Tokyo, J. Geophys. Res., 111, D23206, doi:10.1029/2006JD007125.   DOI
19 Mukai, A. and Y. Ambe (1986) Characterization of humic acid-like brown substance in airborne particulate matter and tentative identification of its origin, Atmos. Environ., 20, 813-819.   DOI
20 National Institute of Occupational Safty and Health (NIOSH) (1996) Method 5040 Issue 1: Elemental Carbon (Diesel Exhaust), NIOSH Manual of Analytical Methods, 4th ed., Cincinnati, OH.   DOI   ScienceOn
21 Odum, J.R., T. Hoffmann, F. Bowman, D. Collins, R.C. Flagan, and J.H. Seinfeld (1996) Gas/particle partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585.   DOI   ScienceOn
22 Park, S.S. and S.Y. Cho (2011) Tracking sources and behaviors of water-soluble organic carbon in fine particulate matter measured at an urban site in Korea, Atmos. Environ., 45(1), 60-72.   DOI   ScienceOn
23 Decesari, S., M.C. Facchini, E. Matta, F. Lettini, M. Mircea, S. Fuzzi, E. Tagliavini, and J.-P. Putaud (2001) Chemical features and seasonal variation of fine aerosol water-soluble organic compounds in the Po Valley, Italy, Atmos. Environ., 35, 3691-3699.   DOI   ScienceOn
24 Decesari, S., M.C. Facchini, E. Matta, M. Mircea, S. Fuzzi, A.R. Chughtai, and D.M. Smith (2002) Water soluble organic compounds formed by oxidation of soot, Atmos. Environ., 36, 1827-1832.   DOI   ScienceOn
25 Decesari, S., M.C. Facchini, S. Fuzzi, and E. Tagliavini (2000) Characterization of water-soluble organic compounds in atmospheric aerosol: A new approach, J. Geophys. Res., 105, 1481-1489.   DOI
26 Facchini, M.C., M. Mircea, S. Fuzzi, and R.J. Charlson (1999) Cloud albedo enhancement by surface-active organic solutes in growing droplets, Nature, 401, 257- 259. Fuzzi, S., M.O. Andreae, B.J. Huebert, M. Kulmala, T.C. Bond, M. Boy, S.J. Doherty, A. Guenther, M. Kanakidou, K. Kawamura, V.-M. Kerminen, U. Lohmann, L.M. Russell, and U. Poschl (2006) Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change, Atmos. Chem. Phys., 6, 2017-2038.   DOI
27 Kondo, Y., Y. Miyazaki, N. Takegawa, T. Miyakawa, R.J. Weber, J.L. Jimenez, Q. Zhang, and D.R. Worsnop (2007) Oxygenated and water-soluble organic aerosols in Tokyo, J. Geophys. Res., 112, D01203, doi:10.1029/2006JD007056.   DOI
28 Kalberer, M., D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.S.H. Prevot, R. Fisseha, E. Weingartner, V. Frankevich, R. Zenobi, and U. Baltensperger (2004) Identification of polymers as major components of atmospheric organic aerosols, Science, 303, 1659-1662.   DOI   ScienceOn
29 Kiss, G., B. Varga, I. Galambos, and I. Ganszky (2002) Characterization of water-soluble organic matter isolated from atmospheric fine aerosol, J. Geophys. Res., 107(D21), 8339, doi:10.1029/2001JD000603.   DOI
30 Kiss, G., E. Tombacz, and H.C. Hansson (2005) Surface tension effects of humic-like substances in the aqueous extract of tropospheric fine aerosol, J. Atmos. Chem., 50, 279-294.   DOI
31 Chang, H., P. Herckes, and J.L. Collett Jr. (2005) On the use of anion exchange chromatography for the characteri- zation of water soluble organic carbon, Geophys. Res. Lett., 32, L01810, doi:10.1029/2004GL021322.   DOI   ScienceOn
32 Bonn, B. and G.K. Moortgat (2003) Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons, Geophys. Res. Lett., 30(11), 1585, doi:10.1029/2003GL017000.   DOI   ScienceOn