• Title/Summary/Keyword: Secondary Pollution

Search Result 248, Processing Time 0.032 seconds

Assessment of polluted factors in aquatic environment using near infrared spectroscopy

  • Norio, Sugiura;Zhang, Yansheng;Wei, Bin;Zhang, Zhenya;Isoda, Hiroko;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1272-1272
    • /
    • 2001
  • Eutrophication processes of aquatic environment are strictly correlated with the concentration levels of nitrogen, phosphorous, organic matter and biological parameters such as phytoplankton and chlorophylla (Tremel, 1996; Burns et al., 1997; Young et al. 1999; Wei et al.,2000). Accordingly, the monitoring and evaluation of these factors will provide useful information about the health of aquatic ecosystem. However, the traditional types of auqatic chemistry analysis and ecological monitoring of phytoplankton are time-consuming, costly, and further resulting in secondary pollution due to the use of reagents. NIR (near-infrared) spectroscopy, as a rapid, non-destructive, little sample preparation and reagents-free technology (Hildrum et al., 1992), has been extensively applied to the characterization of food (Osborne and Fearn, 1988), pharmaceutical (Morisseau and Rhodes, 1995) and textile materials (Clove et al.,2000). Currently, NIR technology has been used indirectly in inferring lake water chemistry by two approaches, suspended (Malley et al., 1996) or seston (Dabakk et al., 1999), and sediments (Korsman et al., 1992; Malley et al., 1999). In addition, the evaluation of trophic state and the identification of the key factors contributed to the trophication are the key step to restore the damaged aquatic environment. Moreover, an understanding of the factors, which regulate the algal proliferation, is crucial to the successful management of aquatic ecosystem. In the paper, NIR technology will be used to study the environmental factors affecting the algal proliferation in combination with the trophic state index and diversity index. This novel developed system can be applied in monitoring and evaluating allopathic water environment and provide real time information services for the aquatic environment management.

  • PDF

Freshwater Fish Fauna in the Seomjin River, Gokseong-gun, Korea (섬진강 수계의 곡성군 어류상)

  • 김성호;윤창호;주현수
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.152-157
    • /
    • 2002
  • The fauna of freshwater fish and the structure of fish community were investigated from March to October in 2001 at six stations in the middle reach of the Seomjin River, Gokseong-gun. The collected fishes (1,786 individuals) were identified into 30 species of 22 genera belonging to S families. Of them, cyprinid fish occupied 26 species, only one species (Rhinogobius brunneus) was secondary freshwater fish. Dominant species was Zacco platypus (dominance index: 24.2%) and subdominant species was Pungtungia herzi (10.7%). The endemic species of Korea were 11 species including Rhodeus uyekii (36.7%) about the ichthyofauna. In estimation of water quality by diversity indices, the general conditions of water quality of all survey times and all stations were relatively fine $(\beta$-mesosaprobic, diversity index: 2.70). But four survey sites except St. 2 and St. 3 showed severe water pollution with one or move times in total survey periods.

Analysis on the Harmful Effect of Recycled Powder and Properties of Concrete Admixture by Recycled Powder (재생미분말의 유해성 분석 및 재생미분말을 혼입한 콘크리트의 특성)

  • Lee, Seung-Hwan;Choi, Ik-Chang;Han, Sang-Kuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.289-295
    • /
    • 2008
  • The disposal of constructive waste is emerging as a national and social issue and the recycled powder generated by the production of reproductive aggregate is all being abolished or buried Analysis on the harmful effect of recycled powder indicated that because it contained massive cytotoxicity, it could derive secondary pollution to soil and subterranean water. This study set on an idea that one way to recycle recycled powder was to use it as a compound of concrete. In order to study that prospect, recycled powder, instead of cement, was mixed and a comparative analysis was conducted on the mechanical properties and workability. From experimental results, it was judged that application of recycled powder of cement replacement ratio below 20% was available with chemical admixtures. Also application of recycled powder was available to high strength concrete.

  • PDF

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin (XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사)

  • Jeong, Jae-Uk;Kim, Ja-Hyun;Park, Seung-Shik;Moon, Kwang-Joo;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.

An Evaluation of the Influence of Boundary Conditions from GEOS-Chem on CMAQ Simulations over East Asia (동아시아지역에서 GEOS-Chem에 의한 경계조건이 CMAQ 모사 결과에 미치는 영향에 대한 평가)

  • Choi, Dae-Ryun;Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.2
    • /
    • pp.186-198
    • /
    • 2013
  • The present work is an attempt to improve the performance of a regional air quality model by means of liking it with a global chemistry transport model. The global chemical transport model of GEOS-Chem is used to provide BC (Boundary Condition)s which reflect temporal and spatial variations at boundaries of regional chemical transport model of CMAQ over East Asia. First, GEOS-Chem outputs are evaluated by comparing predicted concentrations with observed monthly data of gas phase species and secondary inorganic aerosols from EANET (Acid Deposition Monitoring Network in East Asia) sites. The results show that predicted PM10 concentrations are in good agreement with the observations. This implies that GEOS-Chem outputs could be used to provide BCs to CMAQ. Simulated daily and monthly mean PM10 concentrations of CMAQ with the linkage of GEOS-Chem's BCs and constant BCs are then evaluated by comparing predicted concentrations with observations at API (Air Pollution Index) sites in China as well as EANET sites in Korea. CMAQ with the GEOS-Chem outputs improves model simulation in depicting observed PM10 concentrations comparing with those with constant BCs. It is also found that influence of aerosol species are largely dependent on the BCs over East Asia and Korea. Mean biases between simulated versus observed daily and monthly mean concentrations of PM10 with the GEOS-chem were improved by 1~8 ${\mu}g/m^3$ in China region, 3.26 ${\mu}g/m^3$ in Korea.

Spatial and Temporal Variations of Atmospheric Concentrations of Carbonyl Compounds in Seoul Metropolitan Area (수도권 지역 대기 중 카보닐화합물의 시.공간적 농도 분포 특성)

  • Seo, Young-Kyo;Jeong, Eun-Hui;Seo, Seok-Jun;Hwang, Yun-Jeong;Han, Jin-Seok;Bae, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.2
    • /
    • pp.206-219
    • /
    • 2008
  • The purpose of this study is to evaluate concentrations of carbonyl compounds during summer season in Seoul metropolitan area. The air samples were collected at 7 sites in this area from June 2001 to June 2003. The carbonyl compounds were analyzed by DNPH/HPLC method. The analytical method applied in this study showed good repeatability, linearity, and sensitivity. The most abundant carbonyl was formaldehyde (average 4.48 ppb), and followed by acetone, acetaldehyde, methyl ethyl ketone, butyraldehyde, propionaldehyde and benzaldehyde, respectively. Concentrations of carbonyl compounds in June were higher than those in August. There was not only higher solar radiation but also higher ozone concentration in June than in August. As a result o photochemical reactions, carbonyl compounds from both primary and secondary sources are likely to contribute to the formation of ozone. The contributions to photochemical ozone creation of two carbonyl compounds such as formaldehyde and acetaldehyde were estimated to be about 70%. Ratios of formaldehyde to acetaldehyde in this study ranged from 1.13 to 4.26, which are generally equivalent levels to those of other urban areas in domestic and foreign countries.

Comparison of Plant-derived Carbonaceous Components (Organic Molecular Markers and 14carbon) in PM2.5 in Summer and Autumn at Kazo, Japan

  • Sasaka, Kouki;Wang, Qingyue;Sakamoto, Kazuhiko
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.3
    • /
    • pp.165-175
    • /
    • 2017
  • In Japan, the primary carbonaceous particles emitted from motor vehicles and waste incinerators have been reduced due to strict regulations against exhaust gas. However, the relative contribution of carbonaceous particles derived from plants and biomass has been increasing. Accordingly, compositional analysis of carbonaceous particles has become increasingly important to determine the sources and types of particles produced. To reveal the sources of the organic particles contained in particulate matter with diameters of ${\leq}2.5{\mu}m$ ($PM_{2.5}$) and the processes involved in their generation, we analyzed molecular marker compounds (2-methyltetrols, cis-pinonic acid, and levoglucosan) derived from the plants and biomass in the $PM_{2.5}$ collected during daytime- and nighttime-sampling periods in summer (July and August) and autumn (November) in Kazo, which is in the northern area of Saitama prefecture, Japan. We also measured $^{14}C$ carbonaceous concentrations in the same $PM_{2.5}$ samples. The concentrations of 2-methyltetrols were higher in the summer than in the autumn. Because the deciduous period overlaps with this decrease in the levels of 2-methyltetrols, we considered the emission source to broad-leaved trees. In contrast, the emission source of the cis-pinonic acid precursor was considered to be conifers, because its concentration remained almost constant throughout the year. The concentration of levoglucosan was considerably increased in the autumn due to frequent biomass open burning. The ratio of plant-derived carbon to total carbon, obtained by measuring of $^{14}C$, in summer $PM_{2.5}$ sample was higher in the nighttime, and could be influenced by anthropogenic sources during the daytime.

Impact of Media Type and Various Operating Parameters on Nitrification in Polishing Biological Aerated Filters

  • Ha, Jeong-Hyub;Ong, Say-Kee;Surampalli, R.
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.79-84
    • /
    • 2010
  • Three biological aerated filters (BAFs) composed of a PVC pipe with a diameter of 75 mm were constructed and operated at a waste-water temperature at $13^{\circ}C$. The media used for each BAF were: 5-mm gravel; 5-mm lava rock; 12.5-mm diameter by 15-mm long plastic rings, all with a media depth of 1.7 m. The feedwater, which simulated the effluent of aerated lagoons, had influent soluble chemical oxygen demand (sCOD) and ammonia concentrations of approximately 50 and 25 mg/L, respectively. For a hydraulic retention time (HRT) of two hours without recirculation, ammonia percent removals were 98.5, 98.9, and 97.8%, for the gravel, lava rock, and plastic rings, respectively. By increasing the effluent recirculation from 100 to 200% for an HRT of one hour, respective ammonia removals improved from 90.1 to 96, 76.5 to 90, and 65.3 to 79.5% for gravel, lava rock, and plastic rings. Based on the ammonia and sCOD loadings for different HRTs, the estimated maximum ammonia loading was approximately 0.6 kg $NH_3-N/m^3$-day for the three BAFs of different media types. The zero-order biotransformation rates for the BAF with gravel were found to be higher than the lava rock and plastic ring media. The results ultimately showed that BAF can be used as an add-on system to aerated lagoons or as a secondary treatment unit to meet ammonia discharge limits.

A Study on Remediation of Diesel-Contaminated Soil by Biosurfactant- Enhanced Soil Washing (생물계면활성제를 이용한 디이젤 오염토양세척기술에 관한 연구)

  • 문혜준;임영경;김윤관;주춘성;방기연;정욱진;이승우
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.2
    • /
    • pp.13-22
    • /
    • 2002
  • Soil washing by surfactants is a technology to enhance mobilization and subsequent degradation of oil pollutants by reducing the surface tension of pollutants which is combined with soil. In this study, biosurfactant, rhamnolipid was produced from Pseudomonas aemginosa ATCC 9027 which had an excellent biodegradable activity in soil without causing secondary pollution. Effects of chemical surfactants on the removal of diesel from diesel-contaminated soil were compared to those of biosurfactants including rhamnolipid. Diesel removal efficiency by rhamnolipid extracted from P. aeruginosa culture broth was over 95% in both batch and column washing test in 5,000ppm diesel-contaminated soil with 1% surfactants after washing for 24 hours. On the contrary, the results of chemical surfactants were below 50∼80%, The chemical surfactants with HLB value(8∼15) showed more then 75% efficiency of diesel removal. But, when the HLB values were below 8 or over 15. their efficiency were observed as less then 60% of diesel removal. Rhamnolipid, biologically produced surfactants, may also be promising agent for enhancing diesel removal from contaminated soil.

Analysis of Very High Resolution Solar Energy Based on Solar-Meteorological Resources Map with 1km Spatial Resolution (1km 해상도 태양-기상자원지도 기반의 초고해상도 태양 에너지 분석)

  • Jee, JoonBum;Zo, Ilsung;Lee, Chaeyon;Choi, Youngjean;Kim, Kyurang;Lee, KyuTae
    • New & Renewable Energy
    • /
    • v.9 no.2
    • /
    • pp.15-22
    • /
    • 2013
  • The solar energy are an infinite source of energy and a clean energy without secondary pollution. The global solar energy reaching the earth's surface can be calculated easily according to the change of latitude, altitude, and sloped surface depending on the amount of the actual state of the atmosphere and clouds. The high-resolution solar-meteorological resource map with 1km resolution was developed in 2011 based on GWNU (Gangneung-Wonju National University) solar radiation model with complex terrain. The very high resolution solar energy map can be calculated and analyzed in Seoul and Eunpyung with topological effect using by 1km solar-meteorological resources map, respectively. Seoul DEM (Digital Elevation Model) have 10m resolution from NGII (National Geographic Information Institute) and Eunpyeong new town DSM (Digital Surface Model) have 1m spatial resolution from lidar observations. The solar energy have small differences according to the local mountainous terrain and residential area. The maximum bias have up to 20% and 16% in Seoul and Eunpyung new town, respectively. Small differences are that limited area with resolutions. As a result, the solar energy can calculate precisely using solar radiation model with topological effect by digital elevation data and its results can be used as the basis data for the photovoltaic and solar thermal generation.