• Title/Summary/Keyword: Second-order method

Search Result 3,570, Processing Time 0.04 seconds

Second Order Bounce Back Boundary Condition for the Latice Boltzmann Fluid Simulation

  • Kim, In-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A new bounce back boundary method of the second order in error is proposed for the lattice Boltzmann fluid simulation. This new method can be used for the arbitrarily irregular lattice geometry of a non-slip boundary. The traditional bounce back boundary condition for the lattice Boltzmann simulation is of the first order in error. Since the lattice Boltzmann method is the second order scheme by itself, a boundary technique of the second order has been desired to replace the first order bounce back method. This study shows that, contrary to the common belief that the bounce back boundary condition is unilaterally of the first order, the second order bounce back boundary condition can be realized. This study also shows that there exists a generalized bounce back technique that can be characterized by a single interpolation parameter. The second order bounce back method can be obtained by proper selection of this parameter in accordance with the detailed lattice geometry of the boundary. For an illustrative purpose, the transient Couette and the plane Poiseuille flows are solved by the lattice Boltzmann simulation with various boundary conditions. The results show that the generalized bounce back method yields the second order behavior in the error of the solution, provided that the interpolation parameter is properly selected. Coupled with its intuitive nature and the ease of implementation, the bounce back method can be as good as any second order boundary method.

  • PDF

A Time-Domain Approach for the Second-Order Diffraction Problem Around Circular Cylinders in Random Waves

  • YONGHWAN KIM
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.12-18
    • /
    • 2001
  • This study concentrates on the second-order diffraction problem around circular cylinders in multi-frequency waves. The method of solution is a time-domain Rankine panel method which adopts a higher-order approximation for the velocity potential and wave elevation. In the present study, the multiple second-order quadratic transfer functions are extracted from the second-order time signal generated in random waves, and the comparison with other bench-mark test results shows a good agreement. This approach is directly applicable to prediction of nonlinear forces on offshore structures in random ocean.

  • PDF

AN ENERGY-STABLE AND SECOND-ORDER ACCURATE METHOD FOR SOLVING THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • KIM, JEONGHO;JUNG, JINWOOK;PARK, YESOM;MIN, CHOHONG;LEE, BYUNGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.93-114
    • /
    • 2019
  • In this article, we introduce a finite difference method for solving the Navier-Stokes equations in rectangular domains. The method is proved to be energy stable and shown to be second-order accurate in several benchmark problems. Due to the guaranteed stability and the second order accuracy, the method can be a reliable tool in real-time simulations and physics-based animations with very dynamic fluid motion. We first discuss a simple convection equation, on which many standard explicit methods fail to be energy stable. Our method is an implicit Runge-Kutta method that preserves the energy for inviscid fluid and does not increase the energy for viscous fluid. Integration-by-parts in space is essential to achieve the energy stability, and we could achieve the integration-by-parts in discrete level by using the Marker-And-Cell configuration and central finite differences. The method, which is implicit and second-order accurate, extends our previous method [1] that was explicit and first-order accurate. It satisfies the energy stability and assumes rectangular domains. We acknowledge that the assumption on domains is restrictive, but the method is one of the few methods that are fully stable and second-order accurate.

A Second-Order Design Sensitivity-Assisted Monte Carlo Simulation Method for Reliability Evaluation of the Electromagnetic Devices

  • Ren, Ziyan;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.780-786
    • /
    • 2013
  • In the reliability-based design optimization of electromagnetic devices, the accurate and efficient reliability assessment method is very essential. The first-order sensitivity-assisted Monte Carlo Simulation is proposed in the former research. In order to improve its accuracy for wide application, in this paper, the second-order sensitivity analysis is presented by using the hybrid direct differentiation-adjoint variable method incorporated with the finite element method. By combining the second-order sensitivity with the Monte Carlo Simulation method, the second-order sensitivity-assisted Monte Carlo Simulation algorithm is proposed to implement reliability calculation. Through application to one superconductor magnetic energy storage system, its accuracy is validated by comparing calculation results with other methods.

A Formulation of Iterative Eigenvalue Analysis Algorithm to the Second Order Newton Raphson Method (반복계산에 의한 고유치 해석 알고리즘의 2차 뉴튼랩슨법으로의 정식화)

  • Kim, Deok-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.3
    • /
    • pp.127-133
    • /
    • 2002
  • This paper presents an efficient improvement of the iterative eigenvalue calculation method of the AESOPS algorithm. The intuitively and heuristically approximated iterative eigenvalue calculation method of the AESOPS algorithm is transformed to the Second Order Newton Raphson Method which is generally used in numerical analysis. The equations of second order partial differentiation of external torque, terminal and internal voltages are derived from the original AESOPS algorithm. Therefore only a few calculation steps are added to transform the intuitively and heuristically approximated AESOPS algorithm to the Second Order Newton Raphson Method, while the merits of original algorithm are still preserved.

A New Method for Classification of Structural Textures

  • Lee, Bongkyu
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.125-133
    • /
    • 2004
  • In this paper, we present a new method that combines the characteristics of edge in-formation and second-order neural networks for the classification of structural textures. The edges of a texture are extracted using an edge detection approach. From this edge information, classification features called second-order features are obtained. These features are fed into a second-order neural network for training and subsequent classification. It will be shown that the main disadvantage of using structural methods in texture classifications, namely, the difficulty of the extraction of texels, is overcome by the proposed method.

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

Optimum Design of Plane Steel Frames Using Second-Order Inelastic Analysis and Section Increment Method (2차 비탄성해석과 단면점증법을 이용한 평면 강골조 구조물의 최적설계)

  • Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.143-151
    • /
    • 2008
  • In this paper, the optimum design of plane steel frames using second-order inelastic analysis and section increment method is presented. Since the second-order inelastic analysis accounts for geometric and material nonlinearities of the whole system as well as its component members, the design method based on second-order inelastic analysis does not require separate member capacity checks after analysis. A section increment method proposed by this paper is used as optimization technique. The weight of structures is treated as the objective function. The constraint functions are defined by load-carrying capacities, deflections, inter-story drifts, and ductility requirement. The effectiveness of the proposed method are verified by comparing the results of the proposed method with those of other method.